
GCC-AVR Inline Assembler Cookbook 1/13

GCC-AVR
Inline Assembler

Cookbook
Version 1.6

About this Document

Maintanance of this document has stopped. Most parts have been integrated
into the AVR Libc User's Manual, which can be downloaded from

http://www.freesoftware.fsf.org/avr-libc/

The GNU C compiler for Atmel AVR RISC processors offers, to embed assembly language code into
C programs. This cool feature may be used for manually optimizing time critical parts of the software
or to use specific processor instruction, which are not available in the C language.

Because of a lack of documentation, especially for the AVR version of the compiler, it may take some
time to figure out the implementation details by studying the compiler and assembler source code.
There are also a few sample programs available in the net. Hopefully this document will help to
increase their number.

It's assumed, that you are familiar with writing AVR assembler programs, because this is no AVR
assembler programming tutorial. It's no C language tutorial either.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided that the copyright
notice and this permission notice are preserved on all copies. Permission is granted to copy and
distribute modified versions of this manual provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

This document describes version 3.2 of the compiler. There may be some parts, which hadn't been
completely understood by the author himself and not all samples had been tested so far. Because the
author is German and not familiar with the English language, there are definitely some typos and
syntax errors in the text. As a programmer the author knows, that a wrong documentation sometimes
might be worse than none. Anyway, he decided to offer his little knowledge to the public, in the hope
to get enough response to improve this document.

Herne, 22nd of August 2002
Harald Kipp
harald.kipp@egnite.de

http://www.freesoftware.fsf.org/avr-libc/
mailto:harald.kipp@egnite.de

GCC-AVR Inline Assembler Cookbook 2/13

Contents
1 GCC Statement asm .. 3
2 Assembler Code ... 4
3 Input and Output Operands .. 5
4 Clobbers ... 7
5 Assembler Macros .. 9
6 C Stub Functions .. 9
7 C Names Used in Assembler Code..10
8 Frequently Answered Questions .. 11

8.1 Using Constants .. 11
9 Links ... 12
10 Index ... 13

History
05/07/01 V 1.1: Output and input lists sequence corrected in chapter 1. Multibyte operands added.
Index added. Some typos corrected.
05/07/01 V 1.2: subi replaced by inc in clobber samples. Pointer type is mandantory.
05/07/01 V 1.3: Pointer register modifier added.
05/16/02 V 1.4: Fixed the funny "risk" typo. New chapters C Names, FAQ and Links added.
08/10/02 V 1.5: Fixed vairable name in clobber section. New chapter C stub functions added.
08/22/02 V 1.6: Added a note about integration into the official AVR Libc.

GCC-AVR Inline Assembler Cookbook 3/13

1 GCC Statement asm

Let's start with a simple example of reading a value from port D:

asm("in %0, %1" : "=r" (value) : "I" (PORTD) :);

Each asm statement is devided by colons into four parts:

1. The assembler instructions, defined as a single string constant:
"in %0, %1"

2. A list of output operands, separated by commas. Our example uses just one:
"=r" (value)

3. A comma separated list of input operands. Again our example uses one operand only:
"I" (PORTD)

4. Clobbered registers, left empty in our example.

You can write assembler instructions in much the same way like normal assembler programs.
However, registers and constants are used in a different way, if they refer to expressions of your C
program. The connection between registers and C operands is specified in the second and third part
of the asm instruction, resp. the list of input and output operands. The general form is

asm(code : output operand list : input operand list : clobber list);

In the code section operands are refered by a percent sign followed by a single digit. %0 refers to the
first %1 to the second operand and so forth. In example above

%0 refers to "=r" (value) and
%1 refers to "P" (port).

This may still look a little odd now, but the syntax of an operand list will be explained soon. Let us first
look to that part of a compiler listing, which may have been generated from our example:

lds r24,value
/* #APP */

in r24, 12
/* #NOAPP */

sts value,r24

The comments have been added by the compiler to inform the assembler, that the included code has
not been generated by the compilation of C statements, but by inline assembler statements. The
compiler selected r24, to get the value. It may have selected any other register, though. It may not
explicitely load or store the value and it may even decide not to include your assembler code at all. All
these decisions are part of the compiler's optimization strategie. For example, if you never use the
variable value in the remaining part of the C program, the compiler will most likely remove your code,
unless you switched off optimization. To avoid this, you can add the volatile attribute to the asm
statement:

asm volatile("in %0, %1" : "=r" (value) : "I" (PORTD) :);

The last part of the asm instruction, the clobber list, is mainly used to tell the compiler about
modifications done by the assembler code. This part may be omitted, all other parts are required, but
may be left empty. If your assembler routine won't use any input or output operand, still two colons
must follow the assembler code string. A good example is a simple statement to disable interrupts:

asm volatile("cli"::);

GCC-AVR Inline Assembler Cookbook 4/13

2 Assembler Code
You can use the same assembler instruction mnemonics, as you'd use with any other AVR assembler.
And you can write as many assembler statements into one code string as you like and your flash
memory is able to hold.

To make it more readable, you should put each statement on a seperate line:

asm volatile("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
::);

The linefeed and tab characters will make the assembler listing generated by the compiler more
readable. It may look a bit odd for the first time, but that's the way the compiler creates it's own
assembler code.

You may also make use of some special registers.

Symbol Register

__SREG__ Status register at address
0x3F

__SP_H__ Stack pointer high byte at
address 0x3E

__SP_L__ Stack pointer low byte at
address 0x3D

__tmp_reg__ Register r0, used for
temporary storage

__zero_reg__ Register r1, always zero
PC Program counter

Register r0 may be freely used by your assembler code and need not to be restored at the end of your
code. It's a good idea to use __tmp_reg__ and __zero_reg__ instead of r0 or r1, just in case a new
compiler version might change the register definitions.

GCC-AVR Inline Assembler Cookbook 5/13

3 Input and Output Operands
Each input and output operand is described by a constraint string followed by a C expression in
parantheses. GCC-AVR 2.9.5.2 knows the following constraint characters:

Constrain
t

Used for Range

a Simple upper registers r16 to r23
b Base pointer registers pairs y,z
d Upper register r16 to r31
e Pointer register pairs x,y,z
G Floating point constant 0.0
I 6-bit positive integer

constant
0 to 63

J 6-bit negative integer
constant

-63 to 0

K Integer constant 2
L Integer constant 0
l Lower registers r0 to r15
M 8-bit integer constant 0 to 255
n 16-bit integer constant?
N Integer constant -1
O Integer constant 8, 16, 24
P Integer constant 1
q Stack pointer register SPH:SPL
r Any register r0 to r31
t Temporary register r0
v 32-bit integer constant?
w Special upper register pairs r24, r26, r28, r30
x Pointer register pair X x (r27:r26)
y Pointer register pair Y y (r29:r28)
z Pointer register pair Z z (r31:r30)

These definitions seem not to fit properly to the AVR instruction set. The author's assumption is, that
this part of the compiler has never been really finished in this version, but that assumption may be
wrong. The selection of the proper contraint depends on the range of the constants or registers, which
must be acceptable to the AVR instruction they are used with. The C compiler doesn't check any line
of your assembler code. But it is able to check the constraint against your C expression. However, if
you specify the wrong constraints, then the compiler may silently pass wrong code to the assembler.
And, of course, the assembler will fail with some cryptic output or internal errors. For example, if you
specify the constraint "r" and you are using this register with an "ori" instruction in your assembler
code, then the compiler may select any register. This will fail, if the compiler chooses r2 to r15. (It will
never choose r0 or r1, because these are uses for special purposes.) That's why the correct constraint
in that case is "d". On the other hand, if you use the constraint "M", the compiler will take care, that
you don't pass anything else but an 8-bit value. Later on we will see, how to pass multibyte expression
results to the assembler code.

The following table shows all AVR assembler mnemonics, which require operands, and the related
contraints. Because of the improper constraint definitions in version 2.9.5.2, they aren't strict enough.
There is, for example, no constraint, which restricts integer constants to the range 0 to 7 for bit set and
bit clear operations.

Mnemo Constraint
s

adc r,r
add r,r
adiw w,I
and r,r
andi d,M
asr r
bclr I
bld r,I
brbc I,label
brbs I,label
bset I
bst r,I
cbi I,I

cbr d,I
com r
cp r,r
cpc r,r
cpi d,M
cpse r,r
dec r
elpm t,z
eor r,r
in r,I
inc r
ld r,e
ldd r,b
ldi d,M
lds r,label

lpm t,z
lsl r
lsr r
mov r,r
mul r,r
neg r
or r,r
ori d,M
out I,r
pop r
push r
rol r
ror r
sbc r,r
sbci d,M

sbi I,I
sbic I,I
sbiw w,I
sbr d,M
sbrc r,I
sbrs r,I
ser d
st e,r
std b,r
sts label,r
sub r,r
subi d,M
swap r

GCC-AVR Inline Assembler Cookbook 6/13

Constraint characters may be prepended by a single constraint modifier. Contraints without a modifier
specify read-only operands. Modifiers are:

Modifier Specifies
= Write-only operand, usually

used for all output operands.
+ Read-write operand (not

supported by inline assembler)
& Register should be used for

output only

Output operands must be write-only and the C expression result must be an lvalue, which means that
they must be valid on the left side of assignments. Note, that the compiler will not check, if they are of
reasonable type for the kind of operation used in the assembler instructions.

Input operands are, you guessed it, read-only. But what, if you need the same operand for input and
output, as read-write operands are not supported? As stated above, read-write operands are not
supported in inline assembler code. But there's another solution. For input operators it is possible to
use a single digit in the constraint string. Using digit n tells the compiler to use the same register as for
the n-th operand, starting with zero. Here is an example:

asm volatile("swap %0" : "=r" (value) : "0" (value));

This statement will swap the nibbles of an 8-bit variable named value. Constraint "0" tells the compiler,
to use the same input register as for the first operand. Note however, that this doesn't automatically
imply the reverse case. The compiler may choose the same registers for input and output, even if not
told to do so. This is no problem in most cases, but may be fatal, if the output operator is modified by
the assembler code before the input operator is used. In situation, where your code depends on
different registers used for input and output operands, you must add the & constraint modifier to your
output operand. The following example demonstrates this problem:

asm volatile("in %0,%1" "\n\t"
"out %1, %2" "\n\t"
: "=&r" (input)
: "I" (port), "r" (output)
);

In this example an input value is read from a port and then an output value is written to the same port.
If the compiler would have choosen the same register for input and output, then the output value
would have been destroyed on the first assembler instruction. Fortunately this example uses the &
constraint modifier to instruct the compiler not to select any register for the output value, which is used
for any of the input operands.
Back to swapping. Here is the code to swap high and low byte of a 16-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %B0" "\n\t"
"mov %B0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

);

First you will notice the usage of register __tmp_reg__, which we listed among other special registers
in chapter 2. You can use this register without saving its contents. Completely new are those letters A
and B in %A0 and %B0. In fact they refer to two different 8-bit registers, both containing a part of
value.

GCC-AVR Inline Assembler Cookbook 7/13

Another example to swap bytes of a 32-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %D0" "\n\t"
"mov %D0, __tmp_reg__" "\n\t"
"mov __tmp_reg__, %B0" "\n\t"
"mov %B0, %C0" "\n\t"
"mov %C0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

);

If operands do not fit into a single register, the compiler will automatically assign enough registers to
hold the entire operand. In the assembler code you use %A0 to refer to the lowest byte of the first
operand, %A1 to the lowest byte of the second operand and so on. The next byte of the first operand
will be %B0, the next byte %C0 and so on.

This also implies, that it is often neccessary to cast the type of an input operand to the desired size.

A final problem may arise while using pointer register pairs. If you define an input operand

"e" (ptr)

and the compiler selects register Z (r30:r31), then

%A0 refers to r30 and
%B0 refers to r31.

But both versions will fail during the assembly stage of the compiler, if you explicitely need Z, like in

ld r24,Z

If you write

ld r24, %a0

with a lower case a following the percent sign, then the compiler will create the proper assembler line.

4 Clobbers
As stated previously, the last part of the asm statement, the list of clobbers, may be omitted, including
the colon seperator. However, if you are using registers, which had not been passed as operands, you
need to inform the compiler about this. The following example will do an atomic increment. It
increments an 8-bit value pointed to by a pointer variable in one go, without being interrupted by an
interrupt routine or another thread in a multithreaded environment. Note, that we must use a pointer,
because the incremented value needs to be stored before interrupts are enabled.

asm volatile(
"cli" "\n\t"
"ld r24, %a0" "\n\t"
"inc r24" "\n\t"
"st %a0, r24" "\n\t"
"sei" "\n\t"
:
: "e" (ptr)
: "r24"

);

GCC-AVR Inline Assembler Cookbook 8/13

The compiler might produce the following code:

cli
ld r24, Z
inc r24
st Z, r24
sei

One easy solution to avoid clobbering register r24 is, to make use of the special temporary register
__tmp_reg__ defined by the compiler.

asm volatile(
"cli" "\n\t"
"ld __tmp_reg__, %a0" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a0, __tmp_reg__" "\n\t"
"sei" "\n\t"
:
: "e" (ptr)

);

The compiler is prepared to reload this register next time it uses it. Another problem with the above
code is, that it should not be called in code sections, where interrupts are disabled and should be kept
disabled, because it will enable interrupts at the end. We may store the current status, but then we
need another register. Again we can solve this without clobbering a fixed, but let the compiler select it.
This could be done with the help of a local C variable.

{
uint8_t s;
asm volatile(

"in %0, __SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %a1" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a1, __tmp_reg__" "\n\t"
"out __SREG__, %0" "\n\t"
: "=&r" (s)
: "e" (ptr)

);
}

Now anything seems correct, but it isn't really. The assembler code modifies the variable, that ptr
points to. The compiler will not recognize this and may keep its value in any of the other registers. Not
only, that the compiler works with the wrong value, but also the assembler code does, because the C
program may have modified the value too, but the compiler didn't update the memory location for
optimization reasons. The worst thing you can do in this case:

{
uint8_t s;
asm volatile(

"in %0, __SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %a1" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a1, __tmp_reg__" "\n\t"
"out __SREG__, %0" "\n\t"
: "=&r" (s)
: "e" (ptr)
: "memory"

);
}

GCC-AVR Inline Assembler Cookbook 9/13

The special clobber "memory" informs the compiler, that the assembler code may modify any memory
location. It forces the compiler to update all variables, which contents is currently hold in a register
before executing the assembler code. And of course, everything has to be reloaded again after this
code.

In most situations a much better solution would be to declare the pointer destination itself volatile:

volatile uint8_t *ptr;

This way, the compiler expects the value pointed to by ptr to be changed and will load it whenever
used and store it whenever modified.

Situation, in which you need clobbers, are very rare. In most cases there will be better ways.
Clobbered registers will force the compiler to store their values before and reload them after your
assembler code. Avoiding them, enables the full optimization power.

5 Assembler Macros

In order to reuse your assembler language parts, it is useful to define them as macros and put them
into include files. GCC-AVR comes with a bunch of them, which could be found in the directory
avr/include. Using such include files may produce compiler warnings, if they are used in modules,
which are compiled in strict ANSI mode. To avoid that, you can write __asm__ instead of asm and
__volatile__ instead of volatile. These are equivalent aliases.

Another problem with reused macros arises, if you are using labels. In such cases you may make use
of the special pattern %=, which is replaced by a unique number on each asm statement. The
following code had been taken from avr/include/iomacros.h:

#define loop_until_bit_is_clear(port, bit) \
__asm__ __volatile__ (\
"L_%=: " "sbic %0, %1" "\n\t" \

"rjmp L_%=" \
: /* no outputs */ \
: "I" ((uint8_t)(port)), \

"I" ((uint8_t)(bit)) \
)

When used for the first time, L_%= may be translated to L_1404, the next usage might create L_1405
or whatever. In any case, the labels became unique too.

6 C Stub Functions
Macro definitions will include the same assembler code whenever they are referenced. This may not
be acceptable for larger routines. In this case you may define a C stub function, containing nothing
else than your assembler code.

GCC-AVR Inline Assembler Cookbook 10/13

void delay(uint8_t ms)
{

uint16_t cnt;

asm volatile(
"\n"
"L_dl1%=:" "\n\t"
"mov %A0, %A2" "\n\t"
"mov %B0, %B2" "\n"
"L_dl2%=:" "\n\t"
"sbiw %A0, 1" "\n\t"
"brne L_dl2%=" "\n\t"
"dec %1" "\n\t"
"brne L_dl1%=" "\n\t"
: "=&w" (cnt)
: "r" (ms), "r" (delay_count)

);
}

The purpose of this function is to delay the program execution by a specified number of milliseconds,
using a counting loop. The global 16 bit variable delay_count must contain the CPU clock frequency in
Hertz divided by 4000 and must have been set before calling this routine for the first time.

Like described in the clobber section, the routine uses a local variable to hold a temporary value.
Another use for a local variable is a return value. The following function returns a 16 bit value read
from two successive port addresses.

uint16_t inw(uint8_t port)
{

uint16_t result;

asm volatile(
"in %A0,%1" "\n\t"
"in %B0,(%1) + 1"
: "=r" (result)
: "I" (port)

);
return result;

}

7 C Names Used in Assembler Code
By default GCC-AVR uses the same symbolic names of functions or variables in C and assembler
code. You can specify a different name for the assembler code by using a special form of the asm
statement:

unsigned long value asm("clock") = 3686400;

This statement instructs the compiler to use the symbol name clock rather than value. This makes
sense only for external or static variables, because local variables do not have symbolic names in the
assembler code. However, local variables may be held in registers.

GCC-AVR Inline Assembler Cookbook 11/13

With GCC-AVR you can specify the use of a specific register:

void Count(void)
{

register unsigned char counter asm("r3");

... some code...
asm volatile("clr r3");
... more code...

}

The assembler instruction clr r3 will clear the variable counter. GCC-AVR will not completely
reserve the specified register. If the optimizer recognizes, that the variable will not be referenced any
longer, the register may be re-used. But the compiler is not able to check wether this register usage
conflicts with any predefined register. If you reserve too many registers in this way, the compiler may
be even run out of registers during code generation.

In order to change the name of a function you need a prototype declaration, because the compiler will
not accept the asm keyword in the function definition:

extern long Calc(void) asm ("CALCULATE");

Calling the function Calc() will create assembler instructions to call the function CALCULATE.

8 Frequently Answered Questions

8.1 Using Constants
Question: When I do the following:

asm volatile("sbi 0x15,0x07;");

everything is OK! But when I do the same but replacing the address of the port by its label, like:

asm volatile("sbi PORTB,0x07;");

I get a compilation error: "Error: constant value required".

asm volatile("sbi PORTB,0x07;");

Answer: PORTB is a precompiler definition included in the processor specific file included in io-avr.h.
As you may know, the precompiler will not touch strings and PORTB is passed to the assembler. One
way to avoid this problem is:

asm volatile("sbi %0, 0x07" : "I" ((unsigned short)(PORTB)):);

Note, that iomacros.h already provides a sbi() macro definition, which can be used in C programs.

GCC-AVR Inline Assembler Cookbook 12/13

9 Links

If you think, that an important link is missing, please contact the author.

A GNU Development Environment for the AVR Microcontroller
Cover the details of the GNU Tools that are specific to the AVR family of processors.
By Rich Neswold.
http://www.enteract.com/~rneswold/avr/

The AVR-GCC Mailing List
maintained by Jason Kyle.
http://www.avr1.org/mailman/listinfo/avr-gcc-list/

AVR-Assembler-Tutorial
Learning AVR assembler language with practical examples. By Gerhard Schmidt.
http://www.avr-asm-tutorial.net/

http://www.enteract.com/~rneswold/avr/
http://www.avr1.org/mailman/listinfo/avr-gcc-list/
http://www.avr-asm-tutorial.net/

GCC-AVR Inline Assembler Cookbook 13/13

10 Index

%= 9
%0 3
%A0 6

__asm__ 9
__SP_H__ 4
__SP_L__ 4
__SREG__ 4
__tmp_reg__ 4, 8
__volatile__ 9
__zero_reg__ 4

16-bit value 6

32-bit value 7

8-bit value 5

asm 3
assembler code 4
assembler mnemonics 5
atomic increment 7

C 9, 10
clobbers 7
constants 11
constraint characters 5

constraint modifier 6

internal error 5
interrupt 3, 8

labels 9
local variable 8
lvalue 6

macros 9
memory 9
multibyte operand 7

operands 5
optimization 3, 8

pointer register 5, 7

stack pointer 4
status register 4
stub functions 9

type cast 7

unique number 9

volatile 3, 9

	GCC Statement asm
	Assembler Code
	Input and Output Operands
	Clobbers
	Assembler Macros
	C Stub Functions
	C Names Used in Assembler Code
	Frequently Answered Questions
	Links
	Index

