
Nut/OS Memory Considerations



Version 1.0
Copyright © 2002 egnite Software GmbH
egnite makes no warranty for the use of its products and assumes no responsibility for
any errors which may appear in this document nor does it make a commitment to
update the information contained herein.
egnite retains the right to make changes to these specifications at any time, without
notice.
All product names referenced herein are trademarks of their respective companies.
Ethernut is a registered trademark of egnite Software GmbH.



Contents
1 Introduction 1

2 Flash ROM 2

Program Code 2

Boot Loader 3

Micro ROM File System 3

Program Memory Constants 3

Access Time and Endurance 4

3 RAM 5

Variable Storage 5

Heap Memory 6

Program Stack 7

External Bank-Switched RAM 8

4 EEPROM 10

Access Time and Endurance 10

5 Links 11

6 Index 12





1111

1  Introduction
Managing a scarce resource.

This document is far from being completed now.

The Nut/OS Realtime Operating System and its applications make use of three
different types of memory:

• Flash ROM used for program code and constant data

• RAM used for variables and stack

• EEPROM used for configuration data

The AVR line of microcontrollers are using a Harvard architecture, which separates
data and instruction code memory. All known implementations are running on
ATmega128/103 CPUs, where the following limits apply:

• 128K bytes Flash ROM, self-programmable on the ATmega128

• 4K bytes on-chip static RAM, often named internal SRAM

• 4K bytes on-chip EEPROM

Nut/OS has been created with embedded Ethernet applications in mind, thus typical
systems are equipped with additional external RAM of about 32K bytes. This
document also presents the first proposal for implementing bank-switched RAM,
which will be supported in the near future.



2  Flash ROM
Memory for program code and constants

Flash read only memory (Flash ROM) is a non-volatile memory, which preserves its
contents when power supply is removed. Both, the ISP and the JTAG feature allow to
erase and write the content of the flash ROM without removing the CPU from the
application board.

All program code must reside in flash ROM. The ATmega program counter is 16 bits
wide and can address 64K words or 128K bytes of program memory.

Note, that flash ROM must be erased before rewriting. Flash ROM is organized in
sectors. Erasing and writing is done for an entire sector at a time, while reading is
possible on a byte basis.

Program Code
The following steps are used to create the program code and write it into the flash
ROM:

1. Creating one or more text files, which contain the application source code.

2. Compiling the source code creates one object file per source code file.

3. Linking all created object files with Nut/OS libraries to create a binary file.

4. Converting the binary file to a hex file.

5. Uploading the hex file contents to the target's flash ROM using an ISP or JTAG
adapter.

After reset, the CPU starts execution at address zero by default. This address contains
a jump instruction, passing control to the runtime initialization of the C library. When
this initialization is done, the library jumps to the main entry of the application code.
With Nut/OS, this entry is part of the init module, where the Nut/OS initialization takes
place. This will setup memory, timer and thread management of the RTOS and finally
start the main application thread, called NutMain.

When using ICCAVR with its IDE, the init.c source file of Nut/OS has to be included
into the project. However, it must never be modified. If modification is required, one
should make a local copy, which replaces the original Nut/OS code.

An often asked question is, if any possibility exists to extend program code space
using external memory. The simple answer is, that this is not possible. However, the



3333

self-programming feature of the ATmega128 combined with serial memory devices
may offer a solution for specific applications. Another attempt is, to use an interpreter,
which reads the code from external data memory. Neither Nut/OS nor the compilers
support such an environment.

Boot Loader
The ATmega128 is able to self-program its own flash ROM. As an alternative to the
ISP or JTAG adapter, a boot loader may be uploaded once. This bootload can then use
a different interface like RS232 or Ethernet to receive the application code and use this
self-programming feature to write the code into flash ROM.

The flash ROM is divided into two sections, the bootloader section and the application
program section. In addition, there are various configurations available with the
ATmega128 to execute the bootloader code after reset or redirect interrupts to the
boot section. Please refer to the ATmega128 datasheet for further explanations.

Micro ROM File System
To be done.

Program Memory Constants
All AVR instruction codes are two or four bytes long. When executing code, the CPU
addresses a word and thus can access the entire flash ROM with its 16 bit program
counter.

Beside program code, constant data can be located within the entire flash ROM.
However, reading a single byte of data from a 128K byte address space requires 17
address bit, while the instruction set supports a maximum of 16 bits for data
addressing. The ATmega128 and 103 use the RAMPZ bit of the page select register
to indicate usage of the lower or upper 64K byte flash ROM section.

Placing constant data in flash ROM has several important advantages:

1. RAM space is saved, which is typically more scarce than flash ROM.

2. Constant data in flash ROM can't become easily corrupted.

3. No need for the C runtime library to initialize RAM variables.

Point 2 is very important in these tiny hardware systems, where Nut/OS is running,
because they do not provide any kind of memory protection. A single thread is able to
destroy the entire RAM and may make the whole system crash.



Point 3, variable initialization, is further explained in the next chapter.

Both compilers, ICCAVR and AVR-GCC, which are used with Nut/OS, support
constants in program memory. But they use different approaches.

ICCAVR uses the const keyword to specify variables located in ROM. Upto a certain
extend, these variables can be used like normal variables. Of course they are read-
only, but that's the definition of a constant anyway. The problem appears when using
these variables as function parameters, because the function is not able to determine,
whether a parameter passed as a pointer contains an address into RAM or ROM
space. This is why a bunch functions exist in two flavours, one for pointers pointing
into RAM and another for pointers into ROM space.

The GNU compiler offers the ability to add attributes to variables. This feature is used
by the AVR version of the compiler to implement program memory constants. The
attribute progmem forces a variable to reside in ROM. Still the compiler faces the same
problem in case of pointers passed as function arguments.

Last not least, many duplicate API functions exist in Nut/OS to support pointers to
constants in program memory.

Access Time and Endurance
In general, read access to flash ROM is not slower than reading RAM. However, the
compiler needs to generate extra code for ROM access, which adds execution time.

One aspect should not be overlooked. Flash ROM has unlimited read capability, but
can only be erased and written a finite number of times. The flash ROM in the AVR
microcontrollers has a guaranteed endurance of at least 1,000 write/erase cycles. In
the real world, this number may be ten or more times higher.



5555

3  RAM
The data space.

Unless battery backuped, the contents of random access memory (RAM) is
unspecified after powerup.

The 64K byte address space is divided in several parts and slightly differs between the
ATmega103 and the ATmega128. The following table shows the data memory layout
of the Ethernut Board 1.3-Rev-D with the ATmega128 CPU.

Address Range Used by

0x0000 - 0x001F 32 CPU registers

0x0020 - 0x005F 64 I/O registers

0x0060 - 0x00FF 160 extended I/O registers

0x0100 - 0x10FF On-chip internal SRAM

0x1100 - 0x7FFF External SRAM

0x8000 - 0x82FF Unused, available for extension hardware

0x8300 - 0x831F RTL8019AS registers

0x8400 - 0xFFFF Unused, available for extension hardware

Previous Ethernut Boards with ATmega103 CPU didn't get extended I/O registers, but
use this area for internal SRAM, which ends already at 0x0FFF. With both versions the
external RAM chip occupies address range 0x0000 - 0x7FFF, but the ATmega103 or
ATmega128 CPU activate external addressing starting at address 0x1000 or 0x1100
resp. Thus the lower external SRAM space is wasted.

Variable Storage
For initialization purposes, the C compiler determines three types of variables:

1. Auto variables, which are defined within functions and are not declared static.



2. Static and global variables with an initial value of zero, located in the .data
segment.

3. Static and global variables with an initial value not zero, located in the .bss
segment.

Auto variables are placed in the stack area. Any initial value will be assigned after the
program entered the function they are declared in.

Static and global variables are initialized to zero by default, if not otherwise specified.
These variables are grouped into a single RAM area called the .data segment, which is
cleared to zero during initialization. Static and global variables with initial values other
than zero are grouped together in a second RAM area called .bss segment, of which a
mirror exists in flash ROM. During initialization the flash ROM mirror is copied into the
RAM area.

The .data segment is placed at the beginning of the RAM area, followed by the .bss
segment.

Upto now, Nut/OS applications are linked for on-chip RAM only. The linker will not be
informed of external RAM. It's exclusively used by the Nut/OS heap. This may change
in future releases. Right now this limits existing applications to 4K byte variable space.
This is no big problem, because large memory areas like arrays and structures can be
allocated dynamically from the Nut/OS heap.

Heap Memory
Dynamic memory allocations are made from the heap. The heap is a global resource
containing all of the free memory in the system. The C runtime library of both
compilers offer their own heap management, but this is currently not used by Nut/OS.

Nut/OS handles the heap as a linked list of unused blocks of memory, the so called
free-list. The heap manager uses best fit, address ordered algorithm to keep the free-
list as unfragmented as possible. This strategy is intended to ensure that more useful
allocations can be made and ends up with relatively few large free blocks rather than
lots of small ones.

Nut/OS enables external RAM by default and occupies all memory space beyond the
end of internal RAM upto address 0x7FFF as heap memory. If more than 384 bytes of
internal RAM are left between the end of the .bss segment and the end of internal
RAM, this area minus 256 bytes is added to the heap too. The 256 bytes on top of
the internal RAM are left for the idle thread's stack. Obviously, the idle thread uses
much less stack space, but interrupt routines will use it when interrupting the idle
thread.

Enabling external RAM access in module init.c will also switch off PORTA and PORTC
functionality. Nut/OS runs well without external RAM, when no or very limited
network functions are used. This requires to modify init.c. It is recommended to make
a local copy for modification, which replaces the original Nut/OS code.



7777

Program Stack
The C runtime library initializes the stack starting from the top of internal RAM,
growing downwards. This stack is used by the Nut/OS idle thread. As each thread
requires its own stack space, Nut/OS dynamically allocates the requested size from
heap memory when the thread is created. While switching from one thread to another,
Nut/OS saves all CPU registers of the currently running thread and restores the
previously saved register contents of the thread being started, including the stack
pointer.

The memory area used for the stack is allocated by NutThreadCreate(), which is
unable to determine how much stack space may be needed by thread. Therefore this
size is passed as an argument and must be specified by the caller, actually the
programmer. But how can the programmer know?

Stack space is used for two purposes: Register storage during function calls and
storage of auto variables. The stack space used for register storage is decided by the
compiler and is hard to foresee. It depends on the optimization level, the register usage
before, after and within the function call.

Nut/OS API functions called by the application may call other functions as well. In
addition, interrupt routines are using the stack space of the interrupted thread and
need to store all CPU registers.

Putting this all together, it will become clear, that determing the required stack space
is at least difficult, if not even impossible because of the asynchronous nature of
thread switching. Typically a maximum is estimated and some bytes are added for
safety.

Nut/OS allocates 768 bytes of stack for the main thread, which is far more than most
applications will use, if they follow certain rules. To avoid wasting stack space, the
application should...

1. ...not execute recursive function calls, unless a maximum nesting level is
guaranteed.

2. ...not declare large non-static arrays or structures within functions. They should be
either declared global or, to retain reentrency, declared as a pointer and allocated
from heap memory.

Most application threads will be satisfied with 512 or even 256 bytes of stack. If
enough memory is available, you should oversize the stack during development and
reduce it later. Call NutHeapAvailable() to determine the number of bytes available.

Advanced users of Nut/OS may inspect the NUTTHREADINFO structure to track the
stack pointer.



External Bank-Switched RAM
AVR microcontrollers can do a remarkable amount of work, but sometimes the 32K
bytes RAM just aren't enough. Several suggestions have been posted to the Ethernut
mailing list about how to add more RAM. Even replacing all remaining external address
space of about 60K wouldn't help much with new upcoming applications. The solution
would be a bank-switched RAM, sometimes also referred to as mapped memory, as it
maps a large address space into a smaller address window.

The following text presents a proposal, open for discussion. It's intended as a request
for comments, which should be posted to the Ethernut mailing list.

The following table gives an example, how memory layout looks like with bank
switched RAM space.

Address Range Used by

0x0000 - 0x10FF Internal data memory

0x1100 - 0x7FFF 32K Bytes unswitched RAM

0x8000 - 0xBFFF Upto 256 switched RAM banks, 16K bytes each

0xC000 - 0xFEFF Reserved for memory mapped I/O

0xFF00 - 0xFFFF Bank select register

For the first hardware implementation it is planned to use discrete logic for address
decoding and the bank select register. These discrete components may be later
replaced by a programmable logic device.

The software support would be quite limited, because all pointers are still 16-bit. Using
C++ style methods to access items in banked memory would significantly reduce the
performance. Memory banks are expected to be used as buffer space, which typically
requires extensive access by code loops walking through this area. To keep these
loops as tight as possible, the application code should have direct access.

However, some support should be provided by Nut/OS to manage bank selection and
hide this hardware specific part from the rest of the system.

One part of the RTOS, which becomes involved in bank selection is probably thread
switching. This ensures, that a previously accessed memory bank is still available after
control returns to a previously stopped thread.

The same scheme applies to interrupts. As all interrupts are registered with and routed
through Nut/OS, banks can be switched without changing existing drivers.



9999

In addition a number of core routines will be available to provide some basic tasks:

• Return memory start address and size of the bank switched area.

• Allocate and release single banks and return the number of banks available.

• Select a specified bank and query the currently selected one.

In these core routines, banks are simply specified by their number. Bank 0 is selected
by default and may be used as normal data memory for applications, which do not use
bank switching. All core routines can be used within interrupts.

API Call Function Description Parameters

NutBank() Returns the first memory
address of the bank switched
area

None

NutBankSize() Returns the size of the bank
switched area in bytes

None

NutBankAvailable() Returns the number of available
RAM banks. This number
doesn't include bank 0

None

NutBankAllocate() Exclusively allocates a RAM
bank and returns its number or
0 if no banks available

None

NutBankFree() Releases a previously allocated
RAM bank

Number of the bank to be
released

NutBankShow() Makes a bank accessible in the
memory window

Number of the bank to
access, 0 included

NutBankVisible() Returns the number of the bank
currently accessible

Number of the bank to
access

These core routines can be used as a basis for more advanced routines, which may be
implemented when required.



4  EEPROM
Configuration memory.

Electrically erasable programmable read only memory (EEPROM) is a non-volatile
memory, which preserves its contents when power supply is removed. Therefore it's
an ideal memory space used by Nut/OS and many applications to hold configuration
information.

The ATmega128 contains 4K bytes of data EEPROM memory. It is organized as a
separate data space and accessed through two registers, the EEPROM address register
and the EEPROM data. Single bytes can be read and written.

Access Time and Endurance
EEPROM read and write access is very slow. Its use should be limited to reading
configuration data during system startup, which is seldom modified.

Allthough limited, the EEPROM has an endurance of at least 100,000 write/erase
cycles, which is much higher than flash ROM endurance.



11111111

5  Links
Where to find additional information.

http://savannah.nongnu.org/projects/avr-libc/

AVR C Runtime Library.

http://www.ethernut.de/

Information about the Ethernut board.

http://www.egnite.de/

Home of egnite Software GmbH, the developer of Nut/OS and the Ethernut hardware
reference design.

http://savannah.nongnu.org/projects/avr-libc/
http://www.ethernut.de/
http://www.egnite.de/


6  Index

A
AVR-GCC  4

B
bank-switched RAM  10
boot loader  3

C
constant data  4

D
dynamic memory  7

E
EEPROM  12
endurance  5
Ethernut  6
external RAM  1, 7

F
flash ROM  4
Flash ROM  2

H
Harvard architecture  1
heap  7, 9

hex file  2

I
ICCAVR  2, 4
init.c  2, 8
instruction codes  4
interrupt  9
ISP  2

J
JTAG  2, 3

M
mapped memory  10

N
NUTTHREADINFO  9

R
RAMPZ  4
runtime library  4

S
stack  1, 7, 9

V
variables  7


	Introduction
	Flash ROM
	Program Code
	Boot Loader
	Micro ROM File System
	Program Memory Constants
	Access Time and Endurance

	RAM
	Variable Storage
	Heap Memory
	Program Stack
	External Bank-Switched RAM

	EEPROM
	Access Time and Endurance

	Links
	Index

