
Nut/OS
Memory Considerations

PREVIEW

Version 2.1
Copyright © 2002-2007 egnite Software GmbH
egnite makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information
contained herein.
egnite retains the right to make changes to these specifications at any time, without notice.
All product names referenced herein are trademarks of their respective companies.
Ethernut is a registered trademark of egnite Software GmbH.

Table of Contents
1 Introduction.. 1

1.1 Land of Confusion... 1
1.2 Memory Types Used With Nut/OS... 1
1.3 AVR Microcontroller Support... 1
1.4 ARM Microcontroller Support.. 2
1.5 Programming Language Support.. 2

2 Read-Only Memory... 3
2.1 Read-Only Memory Used With Harvard Architectures................................... 3
2.2 Reprogramming Flash Memory...3
2.3 Keeping Constant Data in Flash Memory... 4
2.4 Flash Memory Access Time and Endurance... 4

3 Volatile Memory...7
3.1 Variable Storage.. 7

4 Non-Volatile Memory.. 9
4.1 EEPROM Access Time and Endurance.. 9

5 Nut/OS Program Memory.. 11
5.1 AVR Program Code.. 11

6 Nut/OS Data Memory... 13
6.1 Global Variables...13
6.2 Local Variables.. 13
6.3 Constant Variables... 13
6.4 Heap Memory... 13
6.5 Banked Memory Support...13

7 Nut/OS Stack Usage... 15
7.1 Program Stack...15

8 Nut/OS Configuration Storage.. 17
9 I/O Mapping.. 19
10 Memory Mapped File Systems... 21

10.1 UROM File System... 21
10.2 PNUT File System.. 21
10.3 Tiny File System.. 21

11 Using a Bootloader... 23
11.1Bootloading Nut/OS...23
11.2AVR Bootloader.. 23

12 Compiler Related Considerations.. 25
12.1 GCC for AVR.. 25
12.2 GCC for ARM.. 25
12.3 ImageCraft C Compiler for AVR... 25

13 Memory Layout Showcase.. 29
13.1 Ethernut 1.. 29
13.2 Ethernut 2.. 31
13.3 Ethernut 2 with Atmega2561.. 33
13.4 Ethernut 3 with AT91R40008... 33
13.5 Nintendo Gameboy Advance... 33
13.6 AT91SAM7X256-EK.. 34
13.7 AT91SAM9260-EK.. 34

 Introduction

1 Introduction

1.1 Land of Confusion
In the good old days there was magnetic core memory, which later had been replaced
by two types of computer memory, RAM (Random Access Memory) and ROM (Read-
Only Memory). Actually both, RAM and ROM provide random access. At that time the
confusion started.

The author of this document is nearly the same age as digital electronic technology
and had been able to closely follow the development of computer memory over the
decades. He has no problem to use the term ROM for flash memory, because he
experienced the evolution from mask programmable ROM to PROM, EPROM and
finally EEPROM (Electrically Erasable Programmable Read-Only Memory), of which
flash memory is a special incarnation. Today flash memory is successfully used for
memory cards and sticks, which are obviously not read-only.

Will the development of NVRAM bring back the good old days, where one type of
memory serves all purposes? Definitely not. And, btw., if we look more closely to the
history of computers, we will find out, that there had been many kinds of computer
memory all the way.

1.2 Memory Types Used With Nut/OS
The Nut/OS Realtime Operating System and its applications distinguish three main
memory types:

● Read-only memory, typically used for program code and constant data

● Volatile memory, typically used for data and stack space

● Non-volatile memory, typically used for configuration data

Depending on the microcontroller architecture and the memory types available on the
target board, volatile memory may be used for program code and read-only memory
may be used to store configuration data.

At the time of this writing two microcontroller families are supported, Atmel's 8-bit
AVR line and the 32-bit ARM architecture, which is available from several vendors.

1.3 AVR Microcontroller Support
The AVR line of microcontrollers use a Harvard architecture, which separates data
and program code memory. Currently Nut/OS has been implemented on the
ATmega103, the ATmega128 and the ATmega2561, where the following limits
apply:

1

Nut/OS Memory Considerations

● 128/256k bytes Flash memory, generally read-only, but self-programmable on
the ATmega128 and the ATmega2561

● 4/8k bytes volatile on-chip RAM, often named internal SRAM

● 4K bytes non-volatile on-chip EEPROM

Nut/OS has been initially created for the AVR family with embedded Ethernet
applications in mind, where data packets can reach a size of 1500 bytes. Thus,
typical systems are equipped with additional external RAM of about 32K bytes.
However, small applications without networking capabilities will run fine without
external RAM. On the other hand, Nut/OS supports RAM sizes beyond the addressing
capabilities of the 8-bit AVR by using banked RAM.

1.4 ARM Microcontroller Support
The ARM architecture does not distinguish between program and data memory.
However, program code is usually stored in Flash while RAM is used as data memory.
In some implementations program code initially copies itself from Flash to RAM,
because RAM is typically faster.

As far as addressing capabilities are concerned, the 32-bit ARM architecture is not
that limited. However, real world chips like the AT91SAM7X256, which do not
provide an external memory bus, are bounded to internal memory of some 100k bytes
of Flash memory and some 10k bytes of RAM.

1.5 Programming Language Support
With very few exceptions, where assembly programming is used, the source code is
written in C. Thus, the Nut/OS application programming interface (API) is available for
C. Limited support for C++ applications is available, but seldom used and not yet
well maintained.

As far as memory considerations are related to a specific programming language, this
document will mainly explain them to C programmers.

2

 Read-Only Memory

2 Read-Only Memory
In early computer days the term read-only memory (ROM) refers to solid state
storage, which contents can't be modified after initially stored in the device.
However, today it is commonly used for types of memory, which can't be modified
(re-programmed) easily. Nevertheless, it still serves two main purposes: It is non-
volatile, which means that the contents is available immediately after power up. And
it is cheap when compared to other types of storage devices.

Nowadays, almost all systems use Flash memory, which has several advantages:

● Low cost

● Non-volatile

● Fast read access

● In-system reprogrammable

The disadvantages are

● Memory cells must be erased to become writeable again

● Erasing and writing (reprogramming) is slow

● Erasing can be performed on entire chips or large sectors only

● The total number of allowed erase cycles in a chip's lifetime is limited

2.1 Read-Only Memory Used With Harvard Architectures
The Harvard Architecture allows different word sizes for data and program memory.
This is an advantage for small microcontrollers, when they are designed as reduced
instruction set computers (RISC). The larger program words required by RISC systems
can be combined with small data word sizes to reduce complexity and costs.

The AVR microcontrollers use 16-bit program words and 8-bit data words. The more
advanced members of the AVR family provide an external memory bus interface,
which is however limited to the data path. Program code is exclusively stored in
internal Flash memory. Thus, the memory available for program code and constant
data is not expandable by adding external memory devices, even if the chip offers an
external memory bus.

2.2 Reprogramming Flash Memory
If the Flash memory is integrated into the microcontroller, it can be usually erased and
rewritten without removing any chip from the application board. This capability is
called in-system programming (ISP). It can be done by attaching a desktop computer
to the target system via a specific programming adapter and running a specific
programming utility on the PC, which exchanges control and data informations with
the target, using a specific protocol. Today the JTAG protocol is widely used for this
purpose.

3

Nut/OS Memory Considerations

Another option is available for external Flash memory or microcontrollers, which are
self-programmable. In this case a bootloader may be used, which receives updated
program code via a standard interface like USB, RS-232 or Ethernet. There are
typically two advantages:

● Program updates do not require special hardware like a JTAG adapter

● Bootloaders are often faster than in-system programming

Of course, the program code of the bootloader itself needs to be stored in flash
memory and should be protected against unintentional erasure.

2.3 Keeping Constant Data in Flash Memory
By default, the contents explicitly initialized global and static variables is copied from
read-only memory to RAM during C runtime initialization. As many embedded systems
offer far more Flash memory than RAM, it may make sense to avoid the RAM copy
for variables, which are marked constant. The same applies to constant data, which is
not assigned to a variable and which can't be directly embedded into the code
because of its size. For example, the C instruction

i += 8;
will allow to embed the contant 8 directly into the code, when the microcontroller
supports machine instructions like

add reg,#8
or

ldr r1,#8
add r2,r1

In this case no extra storage is required for the constant. However, the constant
string used in

printf(“Hello world!\n”);
will be stored in an extra memory area and a pointer to this memory location will be
passed to the function printf.

For ARM architectures this is no big deal. Actually the developer can decide, whether
he wants to keep this string in Flash to save RAM or if he prefers to use a copy in
RAM for faster access.

However, when used with Harvard architectures, this provides a real problem.
Remember, that data and program memory are strictly separated and a pointer to any
kind of data is expected to point into data memory. Luckily the AVR provides special
instructions, which allow to read program memory contents. It will be explained later,
how this is implemented by the compiler.

2.4 Flash Memory Access Time and Endurance
On the AVR running at clock speeds of about 16 MHz, read access to flash is not
slower than reading RAM. However, when using flash memory to store constant data,

4

 Read-Only Memory

then the compiler needs to generate extra code, which adds execution time.

Faster ARM CPUs may reach the access time limits of available flash memory and
additional wait states are needed to reduce access cycle times. On the other hand,
RAM is available for faster access without wait states.

Note, that on the ARM7 the external memory bus is limited to 16 bit. Running code in
external flash memory will either require to switch to 16-bit Thumb mode with its
reduced instruction set or requires two 16-bit read accesses per 32 bit word.

Flash memory has unlimited read capability, but can only be erased and written a
finite number of times. The flash memory in the AVR microcontrollers has a
guaranteed endurance of at least 10,000 erase/write cycles (1,000 for the
ATmega103). External flash memory chips like the AT49BV322 used on the Ethernut
3.0 Board allow more than 100,000 erase/write cycles.

5

 Volatile Memory

3 Volatile Memory
Unless battery backuped, the contents of RAM is unspecified after powerup.

The 64K byte address space is divided in several parts and slightly differs between
the ATmega103 and the ATmega128. The following table shows the data memory
layout of the Ethernut Board 1.3-Rev-D with the ATmega128 CPU.

Previous Ethernut Boards with ATmega103 CPU didn't get extended I/O registers, but
use this area for internal SRAM, which ends already at 0x0FFF. With both versions
the external RAM chip occupies address range 0x0000 - 0x7FFF, but the ATmega103
or ATmega128 CPU activate external addressing starting at address 0x1000 or
0x1100 resp. Thus the lower external SRAM space is wasted.

3.1 Variable Storage
For initialization purposes, the C compiler determines three types of variables:

1.Auto variables, which are defined within functions and are not declared static.

2.Static and global variables with an initial value of zero, located in the .data
segment.

3.Static and global variables with an initial value not zero, located in the .bss
segment.

Auto variables are placed in the stack area. Any initial value will be assigned after the
program entered the function they are declared in.

Static and global variables are initialized to zero by default, if not otherwise specified.
These variables are grouped into a single RAM area called the .data segment, which is
cleared to zero during initialization. Static and global variables with initial values other
than zero are grouped together in a second RAM area called .bss segment, of which a
mirror exists in flash ROM. During initialization the flash ROM mirror is copied into the
RAM area.

The .data segment is placed at the beginning of the RAM area, followed by the .bss
segment.

Up to now, Nut/OS applications are linked for on-chip RAM only. The linker will not
be informed of external RAM. It's exclusively used by the Nut/OS heap. This may
change in future releases. Right now this limits existing applications to 4K byte
variable space. This is no big problem, because large memory areas like arrays and
structures can be allocated dynamically from the Nut/OS heap.

7

 Non-Volatile Memory

4 Non-Volatile Memory
Actually the read-only memory described in chapter 2 is a special type of non-volatile
memory. However, Nut/OS distinguishes between non-volatile memory for program
code and constant data, where the contents will typically not change during runtime,
and non-volatile memory for configuration data, where the contents may change more
or less often during runtime and needs to be preserved during periods without power
supply. The latter will be handled in this chapter.

Electrically erasable programmable read only memory (EEPROM) is a non-volatile
memory, which preserves its contents when power supply is removed. Therefore it's
an ideal memory space used by Nut/OS and many applications to hold configuration
information.

The ATmega128 contains 4K bytes of data EEPROM memory. It is organized as a
separate data space and accessed through two registers, the EEPROM address
register and the EEPROM data. Single bytes can be read and written.

4.1 EEPROM Access Time and Endurance
EEPROM read and write access is very slow. Its use should be limited to reading
configuration data during system startup, which is seldom modified.

Although limited, the EEPROM has an endurance of at least 100,000 write/erase
cycles, which is about the same as modern flash memory endurance.

9

 Nut/OS Program Memory

5 Nut/OS Program Memory

5.1 AVR Program Code
The following steps are used to create the program code and write it into the flash
ROM:

1.Creating one or more text files, which contain the application source code.

2.Compiling the source code creates one object file per source code file.

3.Linking all created object files with Nut/OS libraries to create a binary file.

4.Converting the binary file to a hex file.

5.Uploading the hex file contents to the target's flash ROM using an ISP or JTAG
adapter.

After reset, the CPU starts execution at address zero by default. This address
contains a jump instruction, passing control to the runtime initialization of the C
library. When this initialization is done, the library jumps to the main entry of the
application code. With Nut/OS, this entry is part of the init module, where the Nut/OS
initialization takes place. This will setup memory, timer and thread management of the
RTOS and finally start the main application thread, called NutMain.

When using ICCAVR with its IDE, the init.c source file of Nut/OS has to be included
into the project. However, it must never be modified. If modification is required, one
should make a local copy, which replaces the original Nut/OS code.

An often asked question is, if any possibility exists to extend program code space
using external memory. The simple answer is, that this is not possible. However, the
self-programming feature of the ATmega128 combined with serial memory devices
may offer a solution for specific applications. Another attempt is, to use an
interpreter, which reads the code from external data memory. Neither Nut/OS nor the
compilers support such an environment.

11

 Nut/OS Data Memory

6 Nut/OS Data Memory

6.1 Global Variables
In general, global variables are stored in RAM.

6.2 Local Variables
Local variables may be either auto or static variables.

6.3 Constant Variables
Variables, which contents will not change.

6.4 Heap Memory
Dynamic memory allocations are made from the heap. The heap is a global resource
containing all of the free memory in the system. The C runtime library of both
compilers offer their own heap management, but this is currently not used by Nut/OS.

Nut/OS handles the heap as a linked list of unused blocks of memory, the so called
free-list. The heap manager uses best fit, address ordered algorithm to keep the free-
list as unfragmented as possible. This strategy is intended to ensure that more useful
allocations can be made and ends up with relatively few large free blocks rather than
lots of small ones.

Nut/OS enables external RAM by default and occupies all memory space beyond the
end of internal RAM up to address 0x7FFF as heap memory. If more than 384 bytes
of internal RAM are left between the end of the .bss segment and the end of internal
RAM, this area minus 256 bytes is added to the heap too. The 256 bytes on top of
the internal RAM are left for the idle thread's stack. Obviously, the idle thread uses
much less stack space, but interrupt routines will use it when interrupting the idle
thread.

Enabling external RAM access in module init.c will also switch off PORTA and PORTC
functionality. Nut/OS runs well without external RAM, when no or very limited
network functions are used. This requires to modify init.c. It is recommended to make
a local copy for modification, which replaces the original Nut/OS code.

6.5 Banked Memory Support
AVR microcontrollers can do a remarkable amount of work, but sometimes the 64k
bytes address space just isn't enough. Several suggestions have been posted to the
Ethernut mailing list about how to add more RAM. Even replacing all remaining
external address space of about 60k wouldn't help much with new upcoming

13

Nut/OS Memory Considerations

applications. Finally bank-switched RAM was the selected solution, sometimes also
referred to as mapped memory, as it maps a large address space into a smaller
address window.

A CPLD was used for the hardware implementation, which includes logic for address
decoding and a bank select register. Some support is provided by the Nut/OS API to
manage bank selection and hide this hardware specific part from the rest of the
system.

14

 Nut/OS Stack Usage

7 Nut/OS Stack Usage

7.1 Program Stack
The C runtime library initializes the stack, starting from the top of internal RAM and
growing downwards. This stack is used by the Nut/OS idle thread. As each thread
requires its own stack space, Nut/OS dynamically allocates the requested size from
heap memory when the thread is created. While switching from one thread to
another, Nut/OS saves all CPU registers of the currently running thread and restores
the previously saved register contents of the thread being started, including the stack
pointer.

The memory area used for the stack is allocated by NutThreadCreate(), which is
unable to determine how much stack space may be needed by thread. Therefore this
size is passed as an argument and must be specified by the caller, actually the
programmer. But how can the programmer know?

Stack space is used for two purposes: Register storage during function calls and
storage of auto variables. The stack space used for register storage is decided by the
compiler and is hard to foresee. It depends on the optimization level, the register
usage before, after and within the function call.

Nut/OS API functions called by the application may call other functions as well. In
addition, interrupt routines are using the stack space of the interrupted thread and
need to store all CPU registers.

Putting this all together, it will become clear, that it is at least difficult, if not
impossible to determine the required stack space, due to the asynchronous nature of
thread switching. Typically a maximum is estimated and some space are added for
safety.

To avoid wasting stack space, the application should...

● ...not execute recursive function calls, unless a maximum nesting level is
guaranteed.

● ...not declare large non-static arrays or structures within functions. They
should be either declared global or, to retain reentrency, declared as a pointer
and allocated from heap memory.

Most application threads will be satisfied with 512 or even 256 bytes of stack. If
enough memory is available, you should oversize the stack during development and
reduce it later during final testing.

15

 Nut/OS Configuration Storage

8 Nut/OS Configuration Storage
To be done.

17

 I/O Mapping

9 I/O Mapping
Some microcontrollers like the Intel 80x86 provide a dedicated I/O bus. This is called
port-mapped I/O and requires special CPU instructions to access I/O devices. All CPUs
supported by Nut/OS so far provide memory mapped I/O, which means that the same
memory bus is used for memory and I/O devices.

In order not to rule out microcontrollers with port-mapped I/O, Nut/OS generally uses
special I/O functions, which can be easily implemented on targets using memory-
mapped I/O. An additional advantage of using special I/O functions is, that I/O access
can be more easily distinguished from memory access, which is most useful for
hardware emulation.

19

 Memory Mapped File Systems

10 Memory Mapped File Systems

10.1 UROM File System
Simple read-only file system, located in program memory.

10.2 PNUT File System
Simple file system, which is located in volatile memory. Contents will be lost when
restarting the system.

10.3 Tiny File System
Not yet implemented, but simple enough to be usable with 8-bit CPUs.

21

 Using a Bootloader

11 Using a Bootloader

11.1 Bootloading Nut/OS
The Nut/OS distribution includes several sample bootloaders, which make use of the
standard protocols BOOTP and TFTP:

● eboot for bootloading the AVR ATmega128/2561 internal Flash memory via
RTL8019AS Ethernet Controller

● appload for bootloading the AVR ATmega128 internal flash memory via
LAN91C111 Ethernet Controller

● bootmon for bootloading the AT91R40008 internal RAM via DM9000A
Ethernet Controller

Some microcontrollers provide factory programmed bootloaders, like SAM-BA for the
AT91SAM series, which allows bootloading Nut/OS applications from RS-232 or USB.

11.2 AVR Bootloader
The ATmega128 and its successor the ATmega256 are able to self-program their
own flash ROM. As an alternative to the ISP or JTAG adapter, a boot loader may be
uploaded once. This bootloader can then use a different standard interfaces like
RS232 or Ethernet to receive the application code and use the self-programming
feature to write the code into flash ROM.

The flash ROM is divided into two sections, the bootloader section and the application
program section. In addition, there are various configurations available with the
ATmega128/256 to execute the bootloader code after reset or redirect interrupts to
the boot section. Please refer to the related datasheets for further explanations.

23

 Compiler Related Considerations

12 Compiler Related Considerations

12.1 GCC for AVR
The GNU compiler offers the ability to add attributes to variables. This feature is used
by the AVR version of the compiler to implement program memory constants. The
attribute progmem forces a variable to reside in ROM. Still the compiler faces the
same problem in case of pointers passed as function arguments.

Last not least, many duplicate API functions exist in Nut/OS to support pointers to
constants in program memory.

12.2 GCC for ARM
To be done.

12.3 ImageCraft C Compiler for AVR

12.3.1 ImageCraft AVR Runtime Initialization
The standard runtime initialization provided by the ImageCraft Compiler can't be used
with Nut/OS. Instead, slightly modified startup files are included in the Nut/OS
distribution. Check the Nut/OS Software Manual for further information.

Figure 1: ICCAVR startup settings

25

Nut/OS Memory Considerations

When using the ImageCraft IDE, the correct startup file must be specified in the
compiler settings. Also make sure to enable external RAM, if available.

12.3.2 ImageCraft AVR Stack Layout
ICCAVR uses two stacks. A hardware stack is used to store the return address on
subroutine calls and a separate software stack is used for auto variables and
parameter passing. In case of interrupts, the hardware stack is used to save CPU
register contents, which includes the return address. CPU register SP points to the
hardware stack and CPU register Y points to the software stack.

In almost all cases the hardware stack will need much less memory space than the
software stack. Thus, it will easily fit in internal RAM, which is often faster than
external RAM. Unfortunately, the current Nut/OS port for the ImageCraft compiler
doesn't make use of this. Instead the total stack space for each thread is allocated
from heap memory and the software stack pointer is simply set 40 bytes below the
initial hardware stack. Remember, that the AVR stack grows downwards. There is no
way to modify the size of the hardware stack and the related setting in the
ImageCraft IDE is simply ignored.

Nut/OS uses the hardware stack to store CPU registers during context switch. The
related SWITCHFRAME structure is already placed above the current hardware stack
pointer when the thread is created. The ENTERFRAME structure is used only for the
first time entry into the thread function. Thus, the size of 40 bytes for the hardware
stack will actually be increased by the size of the ENTERFRAME structure.

Figure 2: ICCAVR stack, thread is created

Figure 2 shows the initial stack layout after the thread has been created. A switch
frame structure and an enter frame structure are already available on the hardware
stack.

26

NUTTHREADINFO
Structure

Pointer returned by NutThreadCreate

Hardware Stack

Software Stack

Initial Hardware Stack Pointer (SP)

Initial Software Stack Pointer (Y)

ENTERFRAME
Structure

SWITCHFRAME
Structure

 Compiler Related Considerations

When the thread starts running for the first time, the SWITCHFRAME structure and
the ENTERFRAME structure are pulled from the hardware stack. The final stack layout
when entering a new thread is shown in Figure 3.

Figure 3: ICCAVR stack, thread started Figure 4: ICCAVR stack, thread is waiting

When the thread is stopped, the context switcher will push a new SWITCHFRAME
structure containing the thread's context on the hardware stack (see Figure 4).

The 40 bytes plus the size of the ENTERFRAME structure of 9 bytes (10 byte for the
ATmega2561) should be sufficient for most applications.

27

NUTTHREADINFO
Structure

Hardware Stack

Software Stack

Hardware Stack Pointer (SP)

Software Stack Pointer (Y)

NUTTHREADINFO
Structure

Hardware Stack

Software Stack

Hardware Stack Pointer (SP)

Software Stack Pointer (Y)

SWITCHFRAME
Structure

 Memory Layout Showcase

13 Memory Layout Showcase
This chapter discusses the memory layout of several target boards, which are known
to successfully run Nut/OS applications.

13.1 Ethernut 1
The Ethernut 1 Board can be equipped either with an ATmega128 or an ATmega2561
CPU, while early version used an ATmega103 CPU.

A 32k Byte external RAM provides sufficient data space for small to medium network
applications.

The 10 Mbit Ethernet interface is implemented by an RTL8019AS. This chip provides
a full internal address decoder and occupies only 32 byte address space.

13.1.1 Ethernut 1 with ATmega103
Note: The ATmega103 is no longer in production.

Only 28 kBytes of the 32 kByte external RAM are used, because the lower 4k is
overlapped by internal registers and RAM.

Figure 5: Memory Layout of Ethernut 1 with
ATmega103

13.1.2 Ethernut 1 with ATmega128
The ATmega128 is a direct replacement for the ATmega103. It can even run in
ATmega103 mode.

When used in native mode, an additional 160 I/O registers and and additional 96
Bytes of internal RAM are provided. Furthermore, the CPU can self-program its flash

29

Program Memory

32 Registers
64 I/O Registers

Internal SRAM
4000 x 8

Flash Memory
64k x 16

External SRAM
28k x 8

Ethernet I/O

Data Memory

0x0000-0x001F0x0000-0xFFFF

Unused

Unused

0x0020-0x005F

0x0060-0x0FFF

0x1000-0x7FFF

0x8000-0x82FF
0x8300-0x831F
0x8320-0xFFFF

Nut/OS Memory Considerations

memory for bootloading support. An optional boot section can be configured, at sizes
of 0.5k, 1k, 2k or 4k words.

The lower 4352 Bytes of the external RAM are not directly usable, because they are
overlapped by internal CPU registers and internal RAM. Consult the ATmega128
datasheet for how to access this hidden RAM area.

Figure 6: Memory Layout of Ethernut 1 with
ATmega128

13.1.3 Ethernut 1 with Atmega2561
The ATmega2561 is the latest member of the AVR family, which is pin compatible to
the early ATmega103. Though, it can no longer run in ATmega103 mode, but
provides twice the internal RAM and flash memory size of its predecessor, the
Atmega128. However, only the upper 23.5 kBytes of the external RAM are directly
usable. Check the ATmega2561 datasheet for how to access this hidden RAM.

30

Program Memory

32 Registers
64 I/O Registers

Internal SRAM
4096 x 8

Application Section
64k x 16

External SRAM
28416 x 8

Ethernet I/O

Data Memory

0x0000-0x001F0x0000

Unused

Unused

0x0020-0x005F

0x0060-0x00FF

0x1100-0x7FFF

0x8000-0x82FF
0x8300-0x831F
0x8320-0xFFFF

160 Ext. I/O Reg
0x0100-0x10FF

Boot Section 2k x 16

Boot Section 512 x 16

0xF000-0xFFFF

0xF800-0xFFFF

0xFC00-0xFFFF
0xFE00-0xFFFF

Boot Section 1k x 16

Boot Section 4k x 16

 Memory Layout Showcase

Figure 7: Memory Layout of Ethernut 1 with
ATmega2561

13.2 Ethernut 2
Like Ethernut 1, the Ethernut 2 Board can be equipped either with an ATmega128 or
an ATmega2561 CPU, but provides 512 kBytes of RAM, 512 kBytes of serial flash
and a 10/100 Mbit Ethernet interface. The latter uses a LAN91C111 Ethernet
controller.

Due to the limited data address space of the AVR, only 48k of the 512k RAM are
visible to the CPU. The lower 32k, which are partly overlapped by internal registers
and RAM, are fixed, while any of the 30 banks can be made visible in the upper 16k
RAM area. Although banked memory is not supported by the compiler, Nut/OS offers
an API that allows to use a 480 kByte streaming buffer.

31

Program Memory

32 Registers
64 I/O Registers

Internal SRAM
8192 x 8

Application Section
128k x 16 max.

External SRAM
23.5k x 8

Ethernet I/O

Data Memory

0x0000-0x001F0x00000

Unused

Unused

0x0020-0x005F

0x0060-0x01FF

0x2200-0x7FFF

0x8000-0x82FF
0x8300-0x831F
0x8320-0xFFFF

416 Ext. I/O Reg
0x0200-0x21FF

Boot Section 2k x 16

Boot Section 512 x 16

0x1F000-0x1FFFF

0x1F800-0x1FFFF

0x1FC00-0x1FFFF

0x1FE00-0x1FFFF

Boot Section 1k x 16

Boot Section 4k x 16

Nut/OS Memory Considerations

13.2.1 Ethernut 2 with Atmega128
The memory layout is shown in figure 8.

Figure 8: Memory Layout of Ethernut 2 with
ATmega128

32

Program Memory

32 Registers
64 I/O Registers

Internal SRAM
4096 x 8

Application Section
64k x 16

External SRAM
28416 x 8

Ethernet I/O

Data Memory

0x0000-0x001F0x0000

Unused

0x0020-0x005F

0x0060-0x00FF

0x1100-0x7FFF

0xC000-0xCFFF

0xD000-0xFEFF

0x8000-0xBFFF

160 Ext. I/O Reg
0x0100-0x10FF

Boot Section 2k x 16

Boot Section 512 x 16

0xF000-0xFFFF

0xF800-0xFFFF

0xFC00-0xFFFF
0xFE00-0xFFFF

Boot Section 1k x 16

Boot Section 4k x 16

Banking Regs

Banked SRAM
16k x 8

0xFF00-0xFFFF

 Memory Layout Showcase

13.3 Ethernut 2 with Atmega2561
The memory layout is shown in figure 9.

Figure 9: Memory Layout of Ethernut 2 with
ATmega2561

13.4 Ethernut 3 with AT91R40008
To be done.

13.5 Nintendo Gameboy Advance
To be done.

33

Program Memory

32 Registers
64 I/O Registers

Internal SRAM
8192 x 8

External SRAM
23.5k x 8

Data Memory

0x0000-0x001F0x00000

Unused

0x0020-0x005F

0x0060-0x01FF

0x2200-0x7FFF

0x8000-0xBFFF

0xC000-0xCFFF

416 Ext. I/O Reg
0x0200-0x21FF

Boot Section 512 x 16

0x1F000-0x1FFFF

0x1F800-0x1FFFF

0x1FC00-0x1FFFF

0x1FE00-0x1FFFF

Boot Section 1k x 16

0xD000-0xFEFF

0xFF00-0xFFFFBanking Regs

Banked SRAM
16k x 8

Ethernet I/O
Application Section

128k x 16 max.

Boot Section 4k x 16

Boot Section 2k x 16

Nut/OS Memory Considerations

13.6 AT91SAM7X256-EK
To be done.

13.7 AT91SAM9260-EK
To be done.

34

Bibliography

Alphabetical Index

	1 Introduction
	1.1 Land of Confusion
	1.2 Memory Types Used With Nut/OS
	1.3 AVR Microcontroller Support
	1.4 ARM Microcontroller Support
	1.5 Programming Language Support

	2 Read-Only Memory
	2.1 Read-Only Memory Used With Harvard Architectures
	2.2 Reprogramming Flash Memory
	2.3 Keeping Constant Data in Flash Memory
	2.4 Flash Memory Access Time and Endurance

	3 Volatile Memory
	3.1 Variable Storage

	4 Non-Volatile Memory
	4.1 EEPROM Access Time and Endurance

	5 Nut/OS Program Memory
	5.1 AVR Program Code

	6 Nut/OS Data Memory
	6.1 Global Variables
	6.2 Local Variables
	6.3 Constant Variables
	6.4 Heap Memory
	6.5 Banked Memory Support

	7 Nut/OS Stack Usage
	7.1 Program Stack

	8 Nut/OS Configuration Storage
	9 I/O Mapping
	10 Memory Mapped File Systems
	10.1 UROM File System
	10.2 PNUT File System
	10.3 Tiny File System

	11 Using a Bootloader
	11.1Bootloading Nut/OS
	11.2AVR Bootloader

	12 Compiler Related Considerations
	12.1 GCC for AVR
	12.2 GCC for ARM
	12.3 ImageCraft C Compiler for AVR
	12.3.1ImageCraft AVR Runtime Initialization
	12.3.2ImageCraft AVR Stack Layout

	13 Memory Layout Showcase
	13.1 Ethernut 1
	13.1.1 Ethernut 1 with ATmega103
	13.1.2 Ethernut 1 with ATmega128
	13.1.3Ethernut 1 with Atmega2561

	13.2 Ethernut 2
	13.2.1Ethernut 2 with Atmega128

	13.3 Ethernut 2 with Atmega2561
	13.4 Ethernut 3 with AT91R40008
	13.5 Nintendo Gameboy Advance
	13.6 AT91SAM7X256-EK
	13.7 AT91SAM9260-EK

