
eeegggnnniiittteee SSSoooffftttwwwaaarrreee GGGmmmbbbHHH

oooppptttiiiCCCooommmpppooo eeellleeeccctttrrrooonnniiicccsss
Embedded Ethernet

Ethernut Software
Manual

Volume

1111

iiii

E M B E D D E D E T H E R N E T

Ethernut Software Manual

 egnite Software GmbH
Westring 303 • D-44629 Herne

Fon +49 (0)2323-925 375 • Fax +49 (0)2323-925 374
http://www.egnite.de

http://www.egnite.de/

iiiiiiii

Contents

About Nut/OS and Nut/Net 1

Nut/OS Features 1

Nut/Net Features 2

Quick Start 3

Directory Layout 3

Prerequisites for Operation 4

Windows Installation 4

Linux Installation 5

Compiling and Linking 5

Programming the Ethernut Board 5

Nut/OS 7

System Initialization 7

Timer Management 7

Heap Management 8

Thread Management 8

Event Management 8

Stream I/O 9

File System 9

Hardware Interrupts 9

Nut/Net 10

Network Device Initialization 10

Socket API 10

DHCP Protocol 11

HTTP Protocol 11

TCP Protocol 12

UDP Protocol 12

ICMP Protocol 12

IP Protocol 12

ARP Protocol 12

Ethernet Protocol 13

Conversion Functions 13

Network Buffers 13

Creating a simple TCP server 14

Initializing the Ethernet Device 14

Conneting a Client With a Server 15

Communicating with the Client 16

Disconnecting 17

Trying the Sample Code 17

Creating a Webserver 19

Initializing and Connecting 19

Serving Clients 19

Creating Documents 20

Creating CGI Funktions 21

Restricting Access 22

Trying the Sample Code 22

Data Structures 23

EEPROM Contents 23

Frequently Answered Questions 24

Licence 24

Socket API 24

In-System-Programming 24

Reference Material 26

Books 26

RFCs 27

Web Links 27

Index 28

1111

About Nut/OS and Nut/Net

Connects embedded applications to a local Ethernet and the global
Internet.

Nut/OS Features
Nut/OS is a very simple Realtime Operating System (RTOS) providing the following
features:

• Modular design

• Cooperative multithreading

• Event queues

• Dynamic memory management

• Timer support

• Stream I/O functions

• Expandable device driver interface

• Simple Flash ROM filesystem

• Open source to be used with GNU Compiler Collection

Chapter

2222

Nut/Net Features
Nut/Net is a TCP/IP stack providing:

• ARP, IP, UDP, ICMP and TCP protocol over Ethernet

• Automatic configuration via DHCP

• HTTP API with filesystem access and CGI functions

• TCP and UDP Socket API for other protocols

• Open source to be used with GNU Compiler Collection

3333

Quick Start

This chapter will help you quickly set up and start using Nut/OS
and Nut/Net.

Directory Layout
app Nut/OS and Nut/Net application

samples

app/basemon Source of the preloaded
BaseMon program to perform
basic hardware tests

app/httpd Embedded Webserver sample

app/portdio TCP server to control port D

app/simple The most simple Nut/OS
application

app/tcpc Simple TCP client

app/tcps Simple TCP server

app/threads Multithreading sample

app/timers Nut/OS timer support sample

app/uart Serial communication sample

bin Compiled binaries, ready to burn
into the Ethernut board

dev Nut/OS device driver source
code

doc Ethernut hardware and software

Chapter

4444

manual

doc/api/html Ethernut software reference

fs Micro-ROM filesystem sources

include Source code header files

lib Precompiled Nut/OS and
Nut/Net library files

net Nut/Net source code

os Nut/OS source code

pro User protocol source code

tools Additional tools to build
Ethernut applications

tools/crurom Source code of crurom utility

Prerequisites for Operation
The following software is needed to build a Nut/OS application:

• GNU Compiler Collection for AVR. Nut/OS has been tested with AVR GCC
version 3.0.

• In-System programming software like AVR ISP

For additional hardware requirements, please consult the Ethernut Hardware Manual.

Windows Installation
Building and installing AVR GCC in a Windows environment can become a quite
complicated task. Fortunately, many helpful people have prepared an easy to use
installation program, which is available on the Ethernut CD.

When started, the installation program unpacks itself, copies the files into the
requested directory and automatically recompiles the library files.

The compiler needs several environment variables to be set and will not work from the
standard DOS window unless you run the batch file RUN.BAT, which is found in the
installation directory.

5555

Linux Installation
Will be added soon.

Compiling and Linking
All directories containing source code modules provide a Makefile to build the binaries.
Open a Linux console or DOS prompt window with the proper GCC environment and
enter

make

This will compile any source code file in the current directory, that has changed since
the last build. Calling

make install

will additionally copy the resulting hex file to the bin directory or the resulting library
file to the lib directory.

make clean

will delete all compiled object files and binaries in the current directory. This is useful
to force a complete re-build if, for example, you changed the compiler environment.

All these commands may also be invoked from the top directory, where you installed
Nut/OS. The command will be re-invoked automatically for all source code
subdirectories.

Programming the Ethernut Board
In order to run your application on the Ethernut board, the resulting hex file of the
compiled binary has to be moved from the PC's harddisk into the Ethernut's flash
memory. Depending on the programming adapter used, you need to connect the
parallel or serial port of your PC with the ISP socket of the Ethernut board. Refer to the
Ethernut Hardware Manual for further information.

In the next step you need to start your programmer software.

Programming under Windows

In a Windows environment you may use AVR ISP. The latest version is freely available
from Atmel's Website. If started for the first time you need to create a new project,
selecting Project/New Project on the menubar. To program the Ethernut board you
need to select the device ATmega103L and press OK. The next step is to activate the
Program Memory Window and select File/Load from the menubar. A file selection box
appears, allowing you to locate the hex file to be programmed into the Ethernut board.

6666

Note, that by default Nut/OS applications are stored in Motorola S-Record format and
file extension rom. After the hex file has been loaded into the Memory Window, press
F5 on the keyboard to erase, program and verify the device. During programming the
red Prog-LED on the Ethernut board will be lit.

There's a problem with some versions of the AVR ISP software, which sometimes
refuses to correctly detect the ATmega's chip signature. In this case disable the
signature check by selecting Options/Advanced on the menu bar and disable the
signature check.

There are several alternatives to the above mentioned AVR ISP software, like GoISP
from Bernd Mueller or UISP from Uros Platise, which are both freeware.

7777

Nut/OS

Overview.

This chapter is quite incomplete. Please check the Nut/OS Software Reference in
directory doc/api/html for a more detailed description of the provided functions.

System Initialization
By default, C programs are started with a routine called main. This isn't much different
in Nut/OS, however, the main routine is already build into the kernel and added to the
application program by linking init.o.

It will initialize memory management and the thread system and start an idle thread,
which in turn initializes the timer functions. Finally NutMain is called, which must be
defined by the application program as its main routine. Because there's nothing to
return to, this routine should never do so.

A sample application called simple demonstrates the most simple application, that
could be build with Nut/OS.

Timer Management
Nut/OS provides time related services, allowing application to delay itself for an
integral number of system clock ticks. A clock tick occurs every 62.5 ms.

Another useful routine is NutGetCpuClock, which returns the CPU clock in Herz.

Note, that Nut/OS uses on-chip hardware timer 0 of the ATmega CPU. Applications
should use timer 1, if they need an independant hardware timer or a higher resolution.

Chapter

8888

Heap Management
Dynamic memory allocations are made from the heap. The heap is a global resource
containing all of the free memory in the system. The heap is handled as a linked list of
unused blocks of memory, the so called free-list.

The heap manager uses best fit, address ordered algorithm to keep the free-list as
unfragmented as possible. This strategy is intended to ensure that more useful
allocations can be made. We end up with relatively few large free blocks rather than
lots of small ones.

Thread Management
Typically Nut/OS is at its most useful where there are several concurrent tasks that
need to be undertaken at the same time. To support this requirement, Nut/OS offers
some kind of light processes called threads. In this context a thread is a sequence of
executing software that can be considered to be logically independent from other
software that is running on the same CPU.

All threads are executing in the same address space using the same hardware
resources, which significantly reduces task switching overhead. Therefore it is
important to stop them from causing each other problems. This is particularly an issue
where two or more threads need to share a resources like memory locations or
peripheral devices.

The system works on the principle that the most urgent thread always runs. One
exception to this is if a CPU interrupt arrives and the interrupt has not been disabled.
Each thread has a priority which is used to determine how urgent it is. This priority
ranges from 0 to 255, with the lowest value indicating the most urgent.

Nut/OS implements cooperative multithreading. That means, that threads are not
bound to a fixed timeslice. Unless they are waiting for specific event or explicitely
yielding the CPU, they can rely on not being stopped unexpectedly. However, they
may be interrupted by hardware interrupt signals. In opposite to pre-emptive
multithreading, coorperative multithreading simplifies resource sharing and results in
faster and smaller code.

Event Management
Threads may wait for events from other threads or interrupts or may post or broadcast
events to other threads.

Waiting threads line up in priority ordered queues, so more than one thread may wait
for the same event.

9999

Events are posted to a waiting queue, moving the thread from waiting (sleeping) state
to ready-to-run state. A running thread may also broadcast an event to a specified
queue, waking up all threads on that queue.

Usually a woken up thread takes over the CPU, if it's priority is equal or higher than
the currently running thread. However, events can be posted asynchronously, in which
case the posting thread continues to run. Interrupt routines must always post events
asynchronously.

A waiting queue is a simple linked list of waiting threads.

Stream I/O
Most C applications make use of the printf library function, which is not available in
the AVR GCC environment. Therefore Nut/OS provides its own procedure called
NutPrintFormat.

File System
Neither Nut/OS nor Nut/Net require a file system, but Webservers are designed with a
file system in mind. To make things easier for the programmer, Nut/OS provides a very
simple file system, where files are located in ROM.

Hardware Interrupts
All hardware interrupt vectors of the ATmega CPU point to Nut/OS internal interrupt
entries. Device drivers, wether written as Nut/OS extensions or as part of an
application must register callback routines by calling NutRegisterInterrupt, if they want
to handle interrupts.

10101010

Nut/Net

Overview.

Most TCP/IP implementations came from desktop PCs, requirying large code and
buffer space. Available memory of embedded systems like the Ethernut board is much
smaller. Nut/Net has been specifically designed for small systems.

Although this chapter tries to explain some basics, it makes no attempt to describe all
aspects of TCP/IP in full detail. It is assumed that you have a working knowledge of
the protocol.

Network Device Initialization
Before using any Nut/Net function, the application must register the network device
driver by calling NutRegisterDevice and configure the network interface by calling
NutNetAutoConfig. This routine will try to retrieve the local IP address, network mask
and default gateway from a DHCP server. If no DHCP server responds within 10
seconds, NutNetAutoConfig uses the previously stored configuration from the on-chip
EEPROM of the ATmega CPU. If the EEPROM doesn't contain any address,
NutNetAutoConfig will wait for an ICMP packet and use the IP address contained in its
header. In this case the netmask will be 255.255.255.0 and no default gateway will
be configured. Refer to the hardware manual on how to send this initial ICMP (ping)
packet to an Ethernut board.

Applications may also choose to configure a fixed IP address and network mask by
calling NutNetIfConfig.

Socket API
On top of the protocol stack Nut/Net provides an easy to use Application Programming
Interface (API) based on sockets. A socket can be thought of as a plug socket, where
applications can be attached to in order to transfer data between them. Two items are
used to establish a connection between applications, the IP address to determine the
host to connect to and a port number to determine the specific application on that
host.

Chapter

11111111

Because Nut/Net is specifically designed for low end embedded systems, its socket
API is a subset of what is typically available on desktop computers and differs in many
aspects from the standard Berkely interface. However, programmers used to develop
TCP/IP applications for desktop system will soon become familiar with the Nut/Net
socket API.

TCP/IP applications take over one of two possible roles, the server or the client role.
Servers use a specific port number, on which they listen for connection requests. The
port number of clients are automatically selected by Nut/Net.

Nut/Net provides a socket API for the TCP protocol as well as the UDP protocol. The
first step to be done is to create a socket by calling NutTcpCreateSocket or
NutUdpCreateSocket.

TCP server applications will then call NutTcpAccept with a specific port number. This
call will block until a TCP client application tries to connect that port number by calling
NutTcpConnect. After a connection has been established, both partners exchange
data by calling NutTcpSend and NutTcpReceive.

UDP server applications will provide their port number when calling
NutUdpCreateSocket, while UDP client applications pass a zero to this call, in which
case Nut/Net selects a port number currently not in use. Data is transfered by calling
NutUdpSendTo and NutUdpReceiveFrom. Finally NutUdpDestroySocket may be called
to release all memory occupied by the UDP socket structure.

DHCP Protocol
The Dynamic Host Configuration Protocol (DHCP) is based on the UDP protocol and
permits to dynamically assign IP addresses when the network is started.

Nut/Net provides a DHCP client, which is automatically invoked when NutNetIfConfig is
called with IP address 0.0.0.0. The DHCP client broadcasts requests to the network
until an IP address offer is received from a DHCP server. Then the client sends a
response telegram to accept the offer and after the DHCP server acknowledges this
acceptance, Nut/Net configures the interface with the offered IP address, netmask and
optional default gateway.

HTTP Protocol
The Hypertext Transfer Protocol (HTTP) is based on TCP.

12121212

TCP Protocol
The Transmission Control Protocol (TCP) is a connection oriented protocol for reliable
data transmission. Nut/Net takes care, that all data is transmitted reliable and in
correct order. On the other hand this protocol requires more code and buffer space
than any other part of Nut/Net.

Applications should use the socket API to make use of the TCP protocol.

UDP Protocol
The advantage of the User Datagram Protocol (UDP) is its reduced overhead. User
data is encapsulated in only eight additional header bytes and needs not to be buffered
for retransmission. However, if telegrams get lost during transmission, the application
itself is responsible for recovery. Note also, that in complex networks like the Internet,
packets may not arrive in the same order as they have been sent.

Applications should use the socket API to make use of the UDP protocol.

ICMP Protocol
The Internet Control Message Protocol (ICMP).

Nut/Net automatically responds to an ICMP echo request with an ICMP echo reply,
which is useful when testing network connections with a Packet InterNet Groper
(PING) program, which is available on nearly all TCP/IP implementations for desktop
computers.

IP Protocol
The Internet Protocol (IP).

ARP Protocol
The Address Resolution Protocol (ARP).

13131313

Ethernet Protocol

Conversion Functions
If multi-byte values are to be transfered over the network, the most significant byte
must always appear first, followed by less sgnificant bytes. This is called the network
byte order, which differs from the host byte order, the order how multi-byte values are
stored in memory. The compiler (AVR GCC) used to compile Nut/OS stores the least
significant bytes first. Several functions are provided to swap bytes from network byte
order to host byte order or vice versa.

htonl and htons convert 4-byte resp. 2-byte values from host to network byte order,
while ntohl and ntohs convert 4-byte resp. 2-byte values from network to host byte
order.

Another useful conversion is provided by inet_addr and inet_ntoa. While the first
converts an IP address from the decimal dotted ASCII representation to a 32-bit
numeric value in network byte order, the second procedure offers the reverse function.

Network Buffers
Nut/Net uses a special internal representation of TCP/IP packets, which is designed for
minimal memory allocation and copying when packets are passed between layers.

A network buffer structure contains four equal substructures, each of which contains
a pointer to a data buffer and the length of that buffer. Each substructure is
assiociated to a specific protocol layer, datalink, network, transport and application
layer. An additional flag field in the network buffer structure indicates, if the
associated buffer has been dynamically allocated.

Network buffers are created and extended by calling NutNetBufAlloc and destroyed by
calling NutNetBufFree. When a new packet arrives at the network interface, the driver
creates a network buffer with all data stored in the datalink substructure. The Ethernet
layer will then split this buffer by simply setting the pointer of the network buffer
substructure beyond the Ethernet header and adjusting the buffer lengths before
passing the packet to the IP or ARP layer. This procedure is repeated by each layer
and avoids copying data between buffers by simple pointer arithmetic.

When application data is passed from the top layer down to the driver, each layer
allocates and fills only its specific part of the network buffer, leaving buffers of upper
layers untouched. There is no need to move a single data byte of an upper layer to put
a lower level header in front of it.

14141414

Creating a simple TCP server

This chapter explains how to use Nut/OS and Nut/Net to create a
simple TCP server program.

Initializing the Ethernet Device
As with other Nut/OS applications you need to declare a function named NutMain as a
thread, containing an endless loop.

#include <sys/thread.h>

THREAD(NutMain, arg)
{

for(;;) {
}

}

To communicate via Ethernet, you have to initialize the Ethernet hardware. This takes
two steps. The first is to register the device. A call to NutRegisterDevice will add all
hardware dependant routines and data structures to your final code and inform Nut/OS
about the I/O port address and interrupt number to be used.

The Ethernut board is equipped with a Realtek 8019AS Ethernet controller using a
base port address of 8300 hex and interrupt 5:

NutRegisterDevice(&devEth0, 0x8300, 5);

devEth0 is the device information structure of the Realtek device driver. It contains the
device name (eth0), the type of this interface (IFTYP_NET) and, among other things,
the address of the hardware initialization routine. However, NutRegisterDevice will
only set up some data structures but not touch the controller hardware in any way.
With network devices, this is done by calling

NutNetIfConfig("eth0", mac, 0, 0);

The first parameter is the name of the registered device. The second parameter needs
some additional attention. It's an array of 6 bytes, containing the MAC address of the
Ethernet controller. A MAC address, also referred to as the hardware or Ethernet
address is a unique number assigned to every Ethernet node. The upper 24 bits are the
manufacturer's ID, assigned by the IEEE Standards Office. The ID of Ethernut boards

Chapter

15151515

manufactured by egnite Software GmbH is 000698 hex. The lower 24 bits are the
board's unique ID assigned by the manufacturer of the board.

Nut/Net will store this address in EEPROM, but we may also define a static variable to
keep it in the application:

static u_char mac[] = { 0x00,0x06,0x98,0x09,0x09,0x09 };

The two remaining parameters of NutNetIfConfig are used to specify the minimum IP
(Internet Protocol) information, the IP address of our node and the network mask. In
our example we simply set both to zero, which will invoke a DHCP client to query this
information from a DHCP server in the local network. Therefore it may take some
seconds until the call returns, depending on the response time of the DHCP server.

If there's no DHCP server available in your network, you must specify these two 4-
byte values in network byte order. In this byte order the most significant byte is stored
at the first address of a multibyte value, which differs from the byte order used by
AVR processors (our host byte order). Fortunately Nut/Net provides a routine named
inet_addr, which takes a string containing the dotted decimal form of an IP address
and returns the required 4-byte value in host byte order.

If you want to assign IP address 192.168.171.2 with a network mask of
255.255.255.0, call:

NutNetIfConfig("eth0", mac, inet_addr("192.168.171.2"),
inet_addr("255.255.255.0"));

NutNetIfConfig will initialize the Ethernet controller hardware and should lit the link
LED on your board, if it is properly connected to an Ethernet hub or switch. At this
point Ethernut will already respond to ARP and ping requests:

#include <dev/nicrtl.h>
#include <sys/thread.h>
#include <arpa/inet.h>

static u_char mac[] = { 0x00,0x06,0x98,0x09,0x09,0x09 };

THREAD(NutMain, arg)
{

NutRegisterDevice(&devEth0, 0x8300, 5);
NutNetIfConfig("eth0", mac, 0, 0);
for(;;) {
}

}

Conneting a Client With a Server
Upto now we followed the standard path, common to all TCP/IP applications created
for Ethernut. The next task is to create the application specific part.

16161616

In order to communicate via TCP, we need a TCP socket, which is actually a data
structure containing all information about the state of a connection between two
applications.

TCPSOCKET *sock;

sock = NutTcpCreateSocket();

This call allocates the data structure from heap memory, initializes it and returns a
pointer to the structure. The next step specifies, wether we take over the client or the
server part of the communication. As a client we would try to connect to a specified
host on a specified port number. Here's an example to connect to port 12345 of the
host with the IP address of 192.168.171.1:

NutTcpConnect(sock, inet_addr("192.168.171.1"), 12345);

In our sample application we decided to take over the server part, which is done by
calling

NutTcpAccept(sock, 12345);

This call will block until a client tries to connect us. As soon as that happens, we can
send data to the client by calling NutTcpSend or receive data from the client through
NutTcpReceive.

Communicating with the Client
Most application protocols in the Internet environment exchange information by
transmitting ASCII text lines terminated by a carriage return followed by a linefeed
character. This might not be a big problem while sending data, but it requires some
extra effort for incoming data, as arriving segments may contain either a fraction of a
line or multiple lines or both. And even sending data becomes more complicated with
numeric values, because we need to transfer them to there ASCII representation first.

For stream devices Nut/OS provides a bunch of functions for ASCII data I/O, like
NutPrintFormat and NutDeviceGetLine. In order to use them, Nut/Net offers the ability
to create a virtual stream device from a TCP socket.

NUTDEVICE *sostream;
sostream = NutSoStreamCreate(sock);

This device can be used like any other Nut/OS stream device and simplifies line
oriented data I/O.

The first thing servers usually do after a client connected them is to send a welcome
message:

NutPrintString(sostream, "200 Welcome to Ethernut\r\n");

17171717

Note, that it's a good idea to prepend a numeric code in front of server responses.
This way both, a human user as well as a client program can easily interpret the
message. On the other hand, the message above occupies 26 bytes of SRAM space.
Alternatives are:

NutPrintString(sostream, "200 OK\r\n");

or

NutPrintString_P(sostream, PSTR("200 Welcome to Ethernut\r\n"));

In the second example the message is stored in program space and only temporarely
copied to SRAM when needed.

In the next step TCP servers typically await a command from the client, perform the
associated activity, return a response to the client and await the next command.

Disconnecting
Finally the client will disconnect or, as preferred, send a special command to force the
server to disconnect. The server will then call

NutSoStreamDestroy(sostream);

to release all memory occupied by the virtual stream device and then call

NutTcpCloseSocket(sock);

to terminate the socket connection. Next, the server may create a new socket and
wait for a new client connection.

Trying the Sample Code
The complete source code of a TCP server example can be found in subdirectory
app/tcps of your installation directory. If there's no DHCP server in your local network,
you need to modify the call to NutNetIfConfig in the C source file named tcps.c as
explained above.

Note, that your PC and the Ethernut board should use the same network mask but
different IP addresses. And they must reside in the same network, unless you add
specific routes to the Nut/Net routing table. However, IP routing might get rather
complex and is beyond the scope of this manual. You might refer to a good book
explaining that matter.

Most local networks are configured as class C, which means, that a maximum of 254
different IP addresses are available and the IP network mask is specified as
255.255.255.0. All hosts in this network must have equal numbers in the first three

18181818

parts of their IP addresses. In this case 192.168.171.1 and 192.168.171.5 belong to
the same network, but 192.168.171.1 and 192.168.181.5 don't.

After you have done the changes, open a Linux console or DOS prompt with the GCC
environment and enter

make install

This will create an updated binary file named tcps.rom, located in subdirectory bin.

If your local network supports DHCP, you may use the precompiled binary for a first
try, but may later modify the default MAC address.

After programming your Ethernut board with this binary, open a Linux console or DOS
prompt window and type

telnet x.x.x.x 12345

replacing x.x.x.x with the IP address of your Ethernut board. The telnet window
should display

200 Welcome to tcps. Type help to get help.

You may now enter any of the following commands using lower case letters:

memory Displays the number of available SRAM bytes.

threads Lists all created threads.

timers Lists all running timers.

19191919

Creating a Webserver

This chapter explains additional utility functions to help you creating
an embedded webserver application.

In fact the previous chapter provides everything to create any type of TCP server,
which includes a server talking the HTTP protocol. Generally speaking, HTTP defines
the ASCII text line to be exchanged between a webserver and a client, the so called
Webbrowser.

Nut/Net provides a bunch of routines, which reduces the development effort of
creating an embedded webserver to a few API calls.

Initializing and Connecting
The task of initializing the Ethernet hardware and creating a TCP socket remains the
same with every TCP server and is not explained any further. If not familiar with this
part, please refer to the previous chapter.

Two specific initializations may be done for a webserver application, registering CGI
functions and registering authentication, which are explained later.

Serving Clients
After a connection has been established by NutTcpAccept on port 80, the well known
port for HTTP servers, a virtual stream device must be created from the TCP socket by
calling NutSoStreamCreate.

Finally a simple call to NutHttpProcessRequest does it all. It receives HTTP requests,
parses them, checks client authorizations, sends requested documents, calls registered
CGI functions or sends error responses. Here's all the code needed to build an Ethernut
webserver.

#include <dev/nicrtl.h>
#include <sys/thread.h>
#include <sys/timer.h>
#include <sys/print.h>
#include <netinet/sostream.h>

Chapter

20202020

#include <arpa/inet.h>
#include <pro/httpd.h>

static u_char mac[] = { 0x00,0x06,0x98,0x09,0x09,0x09 };

THREAD(NutMain, arg)
{

TCPSOCKET *sock;
NUTDEVICE *sostream;

NutRegisterDevice(&devEth0, 0x8300, 5);
NutNetIfConfig("eth0", mac, 0, 0);
for(;;) {

sock = NutTcpCreateSocket();
NutTcpAccept(sock, 80);
sostream = NutSoStreamCreate(sock);
NutHttpProcessRequest(sostream);
NutSoStreamDestroy(sostream);
NutTcpCloseSocket(sock);

}
}

However, as long as no documents are available and no CGI functions are registered,
the webserver will respond to any request with

404 Not found

Creating Documents
The communication between a webserver and its clients may be reduced to two
simple functions:

1. Client requests a document

2. Server sends the document

Normal webservers running on a computer with mass storage devices will use the file
system to retrieve the requested document. To offer similar functionality, Nut/OS
contains a very simple file system based on data structures stored in flash memory. A
command line utility named crurom is provided to convert files from a subdirectory on
your PC harddisk to a C source code file. This file contains the file structure used by
Nut/OS can be linked to application.

It is far beyond the scope of this manual to explain the creation of HTML documents,
animated images and all the other cool stuff available in The Web. If not familiar with
the basics, there are far too many books covering them.

To get your webpages on the Ethernut board, create a new subdirectory containing all
your web documents and possibly other sub-subdirectories, as you would with any
other webserver. But keep in mind, that the available space is very limited. The good
news is, that your webpages require only flash ROM space, no SRAM memory. With
typical applications at least 64 kByte should be available.

21212121

When you've done your documents, simply run the crurom utility, redirecting its
output into a file. Supposing your web documents are located in a directory name
/nutdevel/nutdocs and your webserver source code is in /nutdevel/httpd, type the
following in a Linux console window:

cd /utdevel/nutdocs
crurom > ../httpd/urom.c

You can use the same commands in a DOS prompt window, but may change to the
proper drive first and replace all slashes with backslashes. If the crurom utility is not
placed in a directory with your path, you must enter the complete pathname.

It's essential to redirect the output to a file outside the current subdirectory tree.
Otherwise this file would be included into the file system, which is most probably not
what you want.

The resulting file urom.c or whatever name you choose for output redirection will
contain C source code, which is normally compiled and liniked to your application as
any other source code file.

Creating CGI Funktions
The Common Gateway Interface is a way for interfacing applications with webservers.
If you register a CGI function by calling

NutRegisterCgi("biton.cgi", SwitchBitOn);

Nut/Net will call a function named SwitchBitOn if the browser requests the URL cgi-
bin/binon.cgi. Note, that Nut/Net will not send any response to the client if the
SwitchBitOn function returns zero. However, if the function returns -1, Nut/Net will
send an internal error page to the browser.

The function must be part of your application and must create the normal respone to
the client. NutNet calls this function with two parameters:

ShowQuery(NUTDEVICE *sostream, REQUEST *req);

The first parameter is the virtual stream device, which your application passed to
NutHttpProcessRequest. The second parameter is a pointer to a REQUEST structure
containing all information about the client request.

Furthermore, Nut/Net provides two helper function to return a standard HTTP response
header to the client, NutHttpSendHeaderTop and NutHttpSendHeaderBot. The content
of the returned document can be send to the client using the standard NutPrint...
functions. This way the document is created dynamically, which offers another
advantage of CGI functions.

22222222

Restricting Access
Calling NutRegisterAuth provides a way to restrict access to certain subdirectories. To
protect a directory named nonpub, you should call

NutRegisterAuth("nonpub", "user:pass");

If a browser tries to requests any document from this directory, the user is prompted
to enter a username and a password. With the example above the required user name
is user and the password is pass.

Trying the Sample Code
The complete source code of a sample HTTP server can be found in subdirectory
app/httpd of your installation directory. If there's no DHCP server in your local
network, you need to modify the call to NutNetIfConfig in the C source file named
nutmain.c as explained in the previous chapter.

Please do also refer to previous chapters on how to compile the program and burn it
into the Ethernut board.

The micro-ROM filesystem contains a simple Flash animation and the source code
contains a very simple CGI function. They can be invoked by querying the following
two URLs with your browser:

http://x.x.x.x/index.html

http://x.x.x.x/cgi-bin/text.cgi

where x.x.x.x must be replaced by the IP address of your Ethernut board.

23232323

Data Structures

Nut/OS and Nut/Net data structure layouts.

EEPROM Contents
The first 64 bytes of the ATmega on-chip EEPROM is reserved by Nut/OS, the
following 64 bytes by Nut/Net. The remaining 3968 bytes are available for
applications.

First Last Bytes Description

0000 0000 1 Size of the Nut/OS configuration structure

0001 0002 2 Magic cookie

0003 0039 61 Reserved

0040 0040 1 Size of the Nut/Net configuration structure

0041 0049 9 Name of the network device

004A 004F 6 Ethernet MAC address

0050 0053 4 Previously used IP address

0054 0057 4 IP netmask

0058 005B 4 Default route gateway IP address

005C 005F 4 Configured IP address

0060 0080 32 Reserved

Chapter

24242424

Frequently Answered Questions

The Nut/OS FAQ.

Licence
Q: Did I get this right? Can I copy Ethernut for commercial products without paying
royality?

A: Yes. Schematics and board layout may be used in private or commercial products
without paying any fee. Although many parts of the software had been taken from
other projects, they can be used without paying royality fee and may be re-distributed
in binary form with or without source code. But note, that you are not allowed to
remove any copyright notices.

Socket API
Q: How to serve more than one client at the same time.

A: Create several threads listening on the same port.

In-System-Programming
Q: AVRISP doesn't work on my NT machine. What's wrong?

A: Note, that Windows NT is not supported by the AVRISP program. A beta version
with Windows NT/2000 support is available at www.kanda-systems.com.

Chapter

25252525

Q: Can I use the STK500 to burn Ethernuts?

A: We thought yes, but William D. Carroll wrote: "For the STK500 the 10-Pin ISP
socket does not work as expected. Your circuit uses pin 3 on the ISP to control the
4053 and select either the ISP socket or the RS232 interface. Pin 3 on the STK500 is
a NC pin and therefore carries no signal. To get around this here is what I did using the
supplied 2-pin cable in the STk500 Kit connect ISP Pins 1-2,5-6,7-8 and 9-10 to
EtherNut ISP Pins 1-2,5-6,7-8 and 9-10 and place a jumper on the ethernut ISP
between pins 2-3 this will allow you to program and verify and read the ATMega103."

26262626

Reference Material

Books
Comer D. Internetworking with TCP/IP, Vol I: Principles, Protocols, and Architecture,
Prentice Hall

Covers many protocols, including IP, UDP, TCP, and gateway protocols. It also
includes discussions of higher level protocols such as FTP, TELNET and NFS.

Comer D., Stevens D. Internetworking with TCP/IP, Vol II: Design, Implementation and
Internals, Prentice Hall

Discusses the implementation of the protocols with many code examples.

Comer D., Stevens D. Internetworking with TCP/IP, Vol III: Client-Server Programming
and Applications, Prentice Hall

Discusses application programming using the internet protocols. It includes examples
of telnet, ftp clients and servers.

Stevens W. TCP/IP Illustrated Vol 1, Addison-Wesley

One of if not the most recommended introduction to the entire TCP/IP protocol suite,
covering all the major protocols and several important applications.

Chapter

27272727

Stevens W. TCP/IP Illustrated Vol 2, Addison-Wesley

Discusses the internals of TCP/IP based on the Net/2 release of the Berkely System.

Stevens W. TCP/IP Illustrated Vol 3, Addison-Wesley

Covers some special topics of TCP/IP.

RFCs
RFCs (Request For Comment) are documents that define the protocols used in the
Internet. Some are standards, others are suggestions or even jokes. Many Internet
sites offer them for download via http or ftp.

Postel, Jon, RFC768: User Datagram Protocol

Postel, Jon, RFC791: Internet Protocol

Postel, Jon, RFC792: Internet Control Message Protocol

Postel, Jon, RFC793: Transmission Control Protocol

Plummer, D.C, RFC826: Ethernet Address Resolution Protocol

Braden, R.T, RFC1122: Requirements for Internet Hosts - Communication Layers

T. Berners-Lee, R. Fielding, and H. Frystyk, RFC1945: Hypertext Transfer Protocol

Web Links
http://www.ethernut.de Ethernut support

http://ethernut.sourceforge.net Ethernut developer's forum

http://www.opticompo.com Ethernut Online Shop

http://www.atmel.com Manufacturers of AVR microcontrollers

http://www.avrfreaks.org Lots of useful infos about AVR microcontrollers

http://nav.webring.yahoo.com/hub?ring=avr Many links to AVR specific information

http://www.ethernut.de/
http://ethernut.sourceforge.net/
http://www.opticompo.com/
http://www.atmel.com/
http://www.avrfreaks.org/
http://nav.webring.yahoo.com/hub?ring=avr

28282828

Index

A
Applications 1
ARP 12

D
DHCP 11

E
Events 8

F
Features 2

H
Heap 8
HTTP 11

I
ICMP 12
Interrupt 9
IP 12
IP Address 10

N
NutGetCpuClock 7
NutNetAutoConfig 10
NutNetBufAlloc 13

NutNetBufFree 13
NutNetIfConfig 10, 11
NutPrintFormat 9
NutRegisterDevice 10
NutRegisterInterrupt 9
NutTcpAccept 11, 19
NutTcpConnect 11
NutTcpCreateSocket 11
NutTcpReceive 11
NutTcpSend 11
NutUdpCreateSocket 11
NutUdpDestroySocket 11
NutUdpReceiveFrom 11
NutUdpSendTo 11

P
Port Number 10
Prerequisites 4

S
Socket 10

T
TCP 12
Thread 8
Timer 7

U
UDP 12

Chapter

	About Nut/OS and Nut/Net
	Nut/OS Features
	Nut/Net Features

	Quick Start
	Directory Layout
	Prerequisites for Operation
	Windows Installation
	Linux Installation
	Compiling and Linking
	Programming the Ethernut Board

	Nut/OS
	System Initialization
	Timer Management
	Heap Management
	Thread Management
	Event Management
	Stream I/O
	File System
	Hardware Interrupts

	Nut/Net
	Network Device Initialization
	Socket API
	DHCP Protocol
	HTTP Protocol
	TCP Protocol
	UDP Protocol
	ICMP Protocol
	IP Protocol
	ARP Protocol
	Ethernet Protocol
	Conversion Functions
	Network Buffers

	Creating a simple TCP server
	Initializing the Ethernet Device
	Conneting a Client With a Server
	Communicating with the Client
	Disconnecting
	Trying the Sample Code

	Creating a Webserver
	Initializing and Connecting
	Serving Clients
	Creating Documents
	Creating CGI Funktions
	Restricting Access
	Trying the Sample Code

	Data Structures
	EEPROM Contents

	Frequently Answered Questions
	Licence
	Socket API
	In-System-Programming

	Reference Material
	Books
	RFCs
	Web Links

	Index

