
Volume 3
Nut/OS Threads, Events and Timers

Version 1.0
Copyright © 2002 egnite Software GmbH
egnite makes no warranty for the use of its products and assumes no responsibility for
any errors which may appear in this document nor does it make a commitment to
update the information contained herein.
egnite retains the right to make changes to these specifications at any time, without
notice.
All product names referenced herein are trademarks of their respective companies.
Ethernut is a registered trademark of egnite Software GmbH.

Contents

1 Introduction 1

2 Threads 2

Declaring Threads 3

Starting Threads 3

Determing the Stack Size 3

Changing Priority 5

Yielding to Other Threads 6

The Idle Thread 7

Terminating Threads 7

Switching Context 7

3 Events 11

Priority Queues 11

Posting Events 12

Interrupts 13

Waiting for Events 13

4 Timers 15

Starting and Stopping Timers 15

Short Execution Delays 15

5 Links 17

6 Index 18

1111

1 Introduction
Nut/OS internals.

This document discusses three basic mechanisms of Nut/OS:

• Threads

• Events

• Timers

2 Threads
Nut/OS implements cooperative multithreading.

C programmers usually start to write single-threaded programs, which sequentially
execute on a single code path. As the name implies, a multithreaded program
concurrently executes several threads.

Of course, a single CPU can't run more than a single thread at a time. But Nut/OS is
able to switch the CPU from the context of one thread to the context of another
thread. This gives the appearance of simultanously running threads.

Each thread has a priority which is used to determine how urgent it is. This priority
ranges from 0 to 255, with the lowest value indicating the most urgent. The system
works on the principle that the most urgent thread always runs if it is not waiting for
any event.

All threads are executing in the same address space using the same hardware
resources, which significantly reduces context switching overhead. Therefore it is
important to stop them from causing each other problems. This is particularly an issue
where two or more threads need to share a resources like memory locations or
peripheral devices.

Nut/OS implements cooperative multithreading. That means, that threads are not
bound to a fixed timeslice. Unless they are waiting for specific event or explicitely
yielding the CPU, they can rely on not being stopped unexpectedly. One exception to
this is if a CPU interrupt signal arrives.

In opposite to preemptive multithreading, coorperative multithreading simplifies
resource sharing and results in faster and smaller code.

3333

Declaring Threads
In Nut/OS thread starting points are defined as functions, which never return:

void threadfn(void *arg) __attribute__ ((noreturn));

The single void pointer argument can be used to pass specific information to the
thread. The include file thread.h contains a macro to simplify the function declaration:

THREAD(threadfn, arg)

A special function named NutMain() must exist in every Nut/OS application.

THREAD(NutMain, arg)

This is equivalent to the standard C function main(), which is hidden in Nut/OS.

Starting Threads
NutMain() is the starting point of the main thread and is automatically called by the
operating system during initialization. The main thread may then launch other threads
by calling NutThreadCreate().

NutThreadCreate(u_char *name, void (*fn)(void *),
void *arg, u_short stackSize);

The first argument name specifies the symbolic name of this thread. Currently this
string doesn't serve any other purposes than giving the thread a human readable
name.

The second argument fn is the pointer to the function, which is used as the threads
entry point.

The third argument arg is the void pointer being passed to this function. This may be
set to null if not used.

The last argument, the threads stack size, which will be further explained now.

Determing the Stack Size
As stated previously, threads share all hardware resources like CPU registers and
memory space. While switching from one thread to another, Nut/OS saves all CPU
registers of the currently running thread and restores the previously saved register
contents of the thread being started. This includes the stack pointer, as each thread
needs its own stack.

The memory area used for the stack is allocated by NutThreadCreate(), which is
unable to determine how much stack space may be needed by thread. Therefore this
size is passed as an argument and must be specified by the caller, actually the
programmer. But how can the programmer know?

Stack space is used for two purposes: Register storage during function calls and
storage of auto variables. Auto variables are variables, which are locally declared
within functions.

The stack space used for register storage is decided by the compiler and is hard to
foresee. It depends on the optimization level, the register usage before, after and
within the function call.

Nut/OS API functions called by the application may call other functions as well. In
addition, interrupt routines are using the stack space of the interrupted thread and
need to store all CPU registers.

Putting this all together, it will become clear, that determing the required stack space
is at least difficult, if not even impossible because of the asynchronous nature of
thread switching. Typically a maximum is estimated and some bytes are added for
safety.

Nut/OS allocates 768 bytes of stack for the main thread, which is far more than most
applications will use, if they follow certain rules. To save stack space, you should
avoid two things. The first is using recursive function calls, unless you can guaranty a
maximum nesting level. The second thing to avoid is declaring large arrays or
structures within functions. Either declare them global or, to retain reentrency, declare
a pointer and allocate the required memory from the heap.

Most application threads will be satisfied with 512 or even 256 bytes of stack. If
enough memory is available, you should oversize the stack during development and
reduce it later. Call NutHeapAvailable() to determine the number of bytes available.

Advanced users of Nut/OS may inspect the NUTTHREADINFOstructure to track the
stack pointer.

5555

Type Element Description

NUTTHREADINFO * td_next Link to the next thread info structure. This
entry is used to create queues.

NUTTHREADINFO * td_qnxt Link to the next thread info structure in the list
of all threads.

u_char[9] td_name Symbolic name of the thread.

u_char td_state Current state of the thread. Possible values are:
TDS_TERM, not used.
TDS_RUNNING, currently running.
TDS_READY, ready to run.
TDS_SLEEP, waiting for an event.

u_short td_sp Stack pointer contents used during context
switch.

u_char td_priority Priority of the thread.

void * td_memory Pointer to the allocated heap memory, which is
used for the thread's stack.

void * td_timer Points to the info structure of the timer the
thread is waiting for. Set to null if the thread is
not waiting for any timer.

void * td_queue Route entry of the queue where the thread is
waiting. Set to null if the thread is ready to run
or running.

Table 1: NUTTHREADINFO strucutre

Changing Priority
This priority of a thread can be set from 0 to 255, where the higher the number the
lower the priority. Initially threads get a priority of 64 when created. In opposite to
many other operating systems, Nut/OS threads can only change their own priority, not
the priority of other thread. The declaration of the API function for doing this is:

u_char NutThreadSetPriority(u_char level);

The only parameter level specifies the new priority. The function returns the priority
that had been previously set.

When calling this function, the context is switched to the thread with the highest
priority, which is not waiting for an event. This may or may not be the calling thread.

Nut/OS and Nut/Net will create their own threads, which are running at hardcoded
priorities.

Symbolic Name Function Priority Stack Space

txi5 Ethernet transmitter 7 640

rxi5 Ethernet receiver 8 640

arpex ARP table expiration 64 384

tcptmr TCP state timer 64 384

dhcp DHCP client 254 512

idle Idle thread 255 384

Table 2: Nut/OS/Net internal threads

Yielding to Other Threads
Threads usually keep running until they are forced to wait for something to happen
elsewhere. The non-preemptive scheduling mechanism used in Nut/OS relies on the
individual thread to frequently yield control of the CPU. Otherwise all remaining
threads are blocked and the system appears to hang.

Threads implicitly yield control when they have to wait for an event. A typical example
is a thread, which receives data through an interface. When this thread calls a data
input routine like NutDeviceGetLine(), it will be suspended if no data is available. The
thread is marked not-ready-to-run and Nut/OS passes control to the next ready-to-run
thread with the highest priority.

However, there are situations where a thread can't expect an event and has to poll,
for example, a port bit. Such a thread must explicitly yield CPU control by calling

void NutThreadYield(void);

The same applies to threads doing lengthy calculations.

After calling NutThreadYield(), you can't make any assumptions about when a thread
will be scheduled to run again. If you want to prevent a thread from running until a
fixed amount of time has elapsed, you should call

void NutSleep(u_long ms);

The only argument that this function takes is a minimum number of milliseconds that
must elapse before the thread will run again. In that sense NutThreadYield() is just a
special case of NutSleep(), indeed NutSleep(0).

7777

The Idle Thread
What happens, if all threads are waiting for an event? During initialization Nut/OS calls

NutThreadCreate("idle", NutIdle, 0, 384);

When called for the very first thread, this function never returns, but immediately
jumps into the specified thread function. The idle function is most simple.

THREAD(NutIdle, arg)

{

NutTimerInit();

NutThreadCreate("main", NutMain, 0, 768);

NutThreadSetPriority(255);

for(;;) {

NutThreadYield();

}

}

It initalizes Nut/OS timer management as part of the initialization, creates the main
application thread, lowers its priority to the minimum and enters an endless loop.
Actually the idle thread loses control after setting the priority, because this API
function switches to the higher priority main thread, which has just been created.

Note, that the endless loop contains a call to NutThreadYield(). If it wouldn't, the
system will hang up as soon as the idle thread gains CPU control. And this is the case
when all other threads are waiting for an event.

Terminating Threads
The current version of Nut/OS is not able to terminate a thread. Generally this is no
problem, because rather than creating and destroying a thread to perform a temporary
task, you can create a task and wait in loop for something to be done. However, the
backdraw is that some occupied resources like stack memory can never be released.

Switching Context
Some of you might be interested in how context switching works inside Nut/OS. The
magic is done by two routines:

void NutThreadEntry(void) __attribute__ ((naked));

NutThreadSwitch(void);

Both routines mainly consist of inline assembly statements.

NutThreadSwitch() pushes all 32 CPU registers on the stack and finally stores the
stack pointer in the NUTTHREADINFO structure of the thread being stopped. Then it
loads the stack pointer from the NUTTHREADINFO structure of the thread to be
started and pops all 32 CPU registers from this stack.

Note, that NutThreadSwitch() is a C function. When entered, the program counter has
already been pushed on the stack due to the call machine instruction generated by the
compiler. The last machine instruction of the C function is a return statement, which
will reload the program counter from the stack. But NutThreadSwitch() is different,
because it modifies the stack pointer itself. So the function will not return with in a
completely different context. We can say, that Nut/OS performs context switching by
simply switching stacks.

When a thread is started for the first time, it had pushed something on the stack. You
can imagnine, that simply calling NutThreadSwitch() will miserably fail. Therefore
NutThreadCreate() prepares the stack in a way, that it looks like the thread had been
previously switched already. For each thread this function allocates one memory from
the heap. The size of this block is the stack size plus the size needed for the
NUTTHREADINFO structure.

Lower memory

Free stack space

Switch frame

Entry frame

Thread info structure

Upper memory

Table 3: Usage of the thread's memory block.

The thread's info structure is located at the end of this memory block. Immediately in
front of it NutThreadCreate() put a so called entry frame. The format of this frame is
dictated by the compiler and will be used later by NutThreadEntry().

9999

Lower memory

R25

R24

RAMPZ

SREG

R1

Return address high byte

Return address low byte

Upper memory

Table 4: Layout of the entry frame.

In front of the entry frame NutThreadCreate() puts the switch frame. This frame looks
exactly like a stack would look like after a context switch. Remember that the stack
pointer of a thread is stored in the NUTTHREADINFO structure when the thread is
stopped during context switch. NutThreadCreate() initializes this item with the address
of the byte in front of the switch frame. When the CPU executes a pop instruction,
the stack pointer is incremented first and then the byte pointed to by the stack pointer
is loaded.

Lower memory

R31

30 more CPU registers

R0

Return address high byte

Return address low byte

Upper memory

Table 5: Layout of the switch frame

Finally NutThreadCreate() inserts the NUTTHREADINFO structure to a special priority
queue, which includes all threads that are ready to run.It doesn't really matter at this
point, wether our newly created thread made it on top of this list or not. Sooner or
later it will become the topmost entry picked up by NutThreadSwitch(). This function

will then find exactly the stack layout it expects from previously stopped threads. It
will load all 32 CPU registers while incrementing the stack pointer.

When NutThreadSwitch reaches its return instruction, it "jumps back" to the other
routine which we introduced above: NutThreadEntry(). Well, it doesn't really return,
because it never had been called from there. But NutThreadSwitch put the associated
return address on the stack.

NutThreadEntry() will find a prepared stack too. When it returns, it "jumps back" to
the thread's starting point.

The very first thread ever started, the idle thread, is handled a bit different by
NutThreadCreate(), because there's nothing to switch from. NutThreadSwitch()
contains a second entry point, created by an assembly language label. This entry point
has been put just before the stack will be switched to a new thread. NutThreadCreate
use an assembly instruction to jump to this label. That's why NutThreadCreate never
returns when creating the idle thread.

11111111

3 Events
The heart of Nut/OS.

As we read in the last chapter, threads are running as long as there's something to do.
In typical applications most threads spend most of the time waiting for something.

Nut/OS provides an event queue mechanism. Threads can line-up in such queues
when they are waiting for an event while other threads can post events to these
queues to wake up waiting threads. This is also known as thread synchronization
because of the interaction between running and waiting threads.

Let's look at a simple example in order to get a better idea of what's happening inside
Nut/OS. An application thread may wait for a command line on a TCP/IP port and calls
NutDeviceGetLine(). This API function or functions called by this API function will find
an empty input buffer on the specified device and call

int NutEventWait(volatile HANDLE *qhp, u_long ms);

The first parameter is a handle of a waiting queue for all threads waiting for data from
the Ethernet interface. The second parameter provides a timeout value given in
milliseconds, which isn't important right now and may be set to zero to disable it.
NutEventWait will mark the current thread not-ready-to-run and add it to the waiting
queue. It will switch the context to another thread which is ready to run with the
highest priority. Remember, that at least the idle thread is always ready.

Now nothing happens until an Ethernet frame is received by the Ethernet controller
hardware. This will trigger a hardware interrupt and the CPU context is switched to
the Ethernet interrupt routine, which in turn posts an event to the waiting queue of
threads waiting for input from the Ethernet interface. This signal will wake up our
application thread, which starts processing the data received. Finally it comes back,
calling NutDeviceGetLine() again an the whole cycle repeats.

In fact, things are a bit more complicated, but the underlying principle should have
become clear.

Priority Queues
The priority queues used by Nut/OS are most simple constructions. Nevertheless they
represent the central structure for thread scheduling and synchronization.

At a first glance, a queue is nothing more than a void pointer. If the pointer is set to
null, the queue is considered empty. A thread is added to the queue by setting the
void pointer to the thread's info structure. Each info structure contains a void pointer
itself, which can be used to point to another info structure. This way Nut/OS can set

up linked lists of info structures and use the void pointer of a wait queue to point to
the root element.

Priority queues add a little extra by keeping the linked list sorted based on the priority
of the thread associated with the info structure. This is quite easy, because the priority
number is part of the thread info structure.

The Nut/OS event API makes use of two functions when handling priority queues:

void NutThreadAddPriQueue(NUTTHREADINFO *td,
NUTTHREADINFO **tqpp);

void NutThreadRemoveQueue(NUTTHREADINFO *td,
NUTTHREADINFO **tqpp);

The first parameter is the pointer to the info structure of the thread to be added to or
removed from the queue. The second parameter is the pointer to the queue, which
itself is a pointer to the first info structure in this queue.

Although possible, applications typically do not call these functions. Many applications
will never use any event function directly. Every application, however, uses them
indirectly when calling input, output or timer functions, if we consider
NutThreadYield() as a special case of the timer function NutSleep().

Nevertheless, the Nut/OS event API is most useful for thread synchronization. In fact
it's the only way to do it, because Nut/OS doesn't provide semaphores or message
queues. If you feel you need these missing functionality, it could be build on top of the
event API as a part of your application.

Posting Events
Events can be posted to a queue by calling

void NutEventPost(HANDLE *qhp);

If one or more threads are waiting on this queue, the first one will be removed from
the queue and becomes ready-to-run. Because of the priority ordered queue, this is
automatically the thread with the highest priority.

If the queue is empty, it will be switched to a special state called signaled. If a thread
intends to wait on a signaled queue, it will remain ready-to-run.

Calling

void NutEventBroadcast(HANDLE *qhp);

will wake up all threads on the specified queue.

13131313

Interrupts
Remember, that interrupt routines somehow break the cooperative multithreading
nature of Nut/OS. Even if the running thread is not willing to pass the CPU to another
thread, interrupt routines are executing immediately if interrupts are enabled. On the
other hand, threads in a cooperative multithreaded environment rely on the
consistency of shared resources without the need to gain exclusive access.

Nut/OS solves this conflict by restricting access for interrupt routines. The following
two API functions are almost the only ones, which are allowed to be called by
interrupt routines:

void NutEventPostAsync(HANDLE *qhp);

void NutEventBroadcastAsync(HANDLE *qhp);

Both functions work the same way as their synchronous conterparts, but they do not
perform the final context switch. They just modify the wait queue and make threads
ready-to-run. The interrupted thread continues to run after the CPU finished executing
the interrupt function.

This way it is possible, that a lower priority thread is running while a higher priority
thread is ready-to-run. As soon as the running thread calls NutThreadYield(), either
directly or indirectly, the CPU will switch to the higher priority thread.

Sometimes it is even necessary to execute parts of the code without being interrupted
by a interrupt routine. For example, the two API functions above will probably corrupt
the wait queue, if they are interrupted by an interrupt routine, which itself tries to
modify the same queue by calling the same function.

Simply disabling the interrupt by clearing the interrupt enable flag in the status register
of the CPU might do the trick. But re-enabling interrupts when done might confuse the
calling function, if it relies on running with disabled interrupts too. Nut/OS offers to
functions to retain the interrupt status among nested routines:

void NutEnterCritical(void);

void NutExitCritical(void);

NutEnterCritical() pushes the contents of the CPU status register on the stack and
disables interrupts, while NutExitCritical() restores the contents of the CPU status
register.

Waiting for Events
The next event function had been introduced already:

int NutEventWait(HANDLE *qhp, u_long ms);

As stated earlier, this function stops the calling thread and adds it to the queue, which
is specified by the first parameter. The second parameter allows us to specify the
number of milliseconds of a maximum waiting time. If this time elapses without any

event posted to the queue, then the thread will become ready to run anyway. In that
case the function returns -1 instead of zero.

Internally Nut/OS starts a timer, which posts an event if it elapses. Timers will be
handled in the next chapter.

15151515

4 Timers
Time triggered events.

This chapter is not completed.

Since version 2.2 the timer handling in Nut/OS had been changed significantly. While
previous versions used an additional thread to handle an internal list of running timers,
timer events are now processed in the timer interrupt routine. This was made possible
by Marc Wetzel, who suggested several optimizations.

Two timer functions had been introduced already:

void NutTimerInit(void);

void NutSleep(u_long ms);

Do not even think of calling the first one unless you write your own initialization
function. The second function, NutSleep() stops the execution of the calling thread for
at least the specified number of milliseconds.

Starting and Stopping Timers
NutSleep() makes use of another function:

HANDLE NutTimerStart(u_long ms, void
(*callback)(HANDLE, void *), void *arg, u_char
flags);

This creates a new timer.

To remove a timer from the list and destroy it, call

void NutTimerStop(HANDLE handle);

Short Execution Delays
Sometimes very short delays are needed. Very often programmers use a simple loop,
which does nothing else than incrementing a loop counter. However, be aware, that
the compiler may find out, that this loop is irrelevant. In this case the loop is
completely removed. Another approach is to include assembly statements containing
just NOP codes. When they are declared volatile, the compiler will leave them
untouched. This works fine for very short delays, but note, that the actual delay time
depends on the CPU speed.

For delays in the range of some millisecond, Nut/OS offers a delay routine, which
adjusts itself to the CPU speed:

void NutDelay(u_char ms);

In other situations the application might need to know the CPU speed, which is offered
as a return value from

u_long NutGetCpuClock(void);

17171717

5 Links

Where to find additional information.

http://ethernut.sourceforge.net/

Ethernut developer forum.

http://www.ethernut.de/

Information about the Ethernut board.

http://www.egnite.de/

Home of egnite Software GmbH, the developer of the Medianut software and Ethernut
hardware.

http://ethernut.sourceforge.net/
http://www.ethernut.de/
http://www.egnite.de/

6 Index

A
Applications 2

C
cooperative multithreading 2

E
entry frame 8
event 11

I
idle thread 7, 10
interrupt 4, 11, 13

L
Links 17

M
message queue 12
multithreaded 2

N
NutDelay 15
NutDeviceGetLine 11
NutEnterCritical 13
NutEventBroadcastAsync 13
NutEventPost 12
NutEventPostAsync 13
NutEventWait 11, 13
NutExitCritical 13
NutGetCpuClock 16

NutMain 3
NutSleep 6, 15
NutThreadEntry 7
NUTTHREADINFO 4, 8, 12
NutThreadSwitch 7
NutThreadYield 6
NutTimerInit 15
NutTimerStart 15
NutTimerStop 15

P
priority 5
priority queue 11

Q
queue 11

S
semaphore 12
signaled 12
stack size 3
status register 13
switch frame 9
synchronization 12

T
terminating 7
thread 2
timer 14, 15

Y
yielding 6

	Introduction
	Threads
	Declaring Threads
	Starting Threads
	Determing the Stack Size
	Changing Priority
	Yielding to Other Threads
	The Idle Thread
	Terminating Threads
	Switching Context

	Events
	Priority Queues
	Posting Events
	Interrupts
	Waiting for Events

	Timers
	Starting and Stopping Timers
	Short Execution Delays

	Links
	Index

